【题目】如图程序框图的算法思路源于我国古代数学名著《九章算术》中的某一种算法.执行该程序框图,输入分别为98,63,则输出的结果是( )
A.14
B.18
C.9
D.7
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥O﹣ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为常数,函数.
(1)当时,求关于的不等式的解集;
(2)当时,若函数在上存在零点,求实数的取值范围;
(3)当时,对于给定的,且,,证明:关于的方程在区间内有一个实根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(a为实数).
(1)当a=4时,求函数y=g(x)在x=0处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值;
(3)如果关于x的方程g(x)=2exf(x)在区间[ ,e]上有两个不等实根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,平面底面, ,点分别是的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求证: 平面;
(Ⅲ)在棱上求作一点,使得,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 圆,过点作圆的切线,切点分别为、,且(为原点).
()求点的轨迹方程.
()求四边形面积的最小值.
()设, ,在圆上存在点,使得,求的最大值和最小值(直接写出结果即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com