【题目】一个口袋装有大小相同的小球9个,其中红球2个、黑球3个、白球4个,现从中抽取2次,每次抽取一个球.
(1)若有放回地抽取2次,求两次所取的球的颜色不同的概率;
(2)若不放回地抽取2次,取得红球记2分,取得黑球记1分,取得白球记0分,记两次取球的得分之和为随机变量X,求X的分布列和数学期望.
【答案】
(1)解:设事件A为“两次所取的球颜色不同”,
则P(A)=1﹣[( )2+( )2+( )2]= .
(2)解:由题意得X的可能取值为0,1,2,3,4,
P(X=0)= = ,
P(X=1)= = ,
P(X=2)= = ,
P(X=3)= = ,
P(X=4)= = ,
∴X的分布列为:
X | 0 | 1 | 2 | 3 | 4 |
P |
EX= = .
【解析】(1)设事件A为“两次所的球颜色不同”,利用对立事件概率计算公式能求出两次所取的球的颜色不同的概率.(2)由题意得X的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出X的分布列和数学期望.
【考点精析】关于本题考查的离散型随机变量及其分布列,需要了解在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(1)求的方程;
(2)是否存在直线与相交于两点,且满足:①与(为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣ ax2+(1﹣a)x,其中a∈R,f(x)的导函数是f′(x).
(1)求函数f(x)的极值;
(2)在曲线y=f(x)的图象上是否存在不同的两点A(x1 , y1),B(x2 , y2)(x1≠x2),使得直线AB的斜率k=f′( )?若存在,求出x1与x2的关系;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】比较下列各题中两个数的大小:
(1)log60.8,log69.1;
(2)log0.17,log0.19;
(3)log0.15,log2.35
(4)loga4,loga6(a>0,且a≠1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左顶点为,且椭圆与直线相切,
(1)求椭圆的标准方程;
(2)过点的动直线与椭圆交于两点,设为坐标原点,是否存在常数,使得?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com