精英家教网 > 高中数学 > 题目详情

【题目】已知定义域为的函数满足:(1)对任意,恒有成立;(2)当时,.给出如下结论:

①对任意,有

②函数的值域为

③存在,使得

函数在区间上单调递减的充要条件是存在,使得”.

上述结论正确有(

A.1B.2C.3D.4

【答案】C

【解析】

依据题中条件注意研究每个选项的正确性,连续利用题中第(1)个条件得到①正确;连续利用题中第(2)个条件得到②正确;利用反证法及2x变化如下:2481632,判断③命题错误;据①②③的正确性可得④是正确的.

f2m)=f22m1)=2f2m1)=2m1f2),正确;

②取x∈(2m2m+1],则∈(12]f)=2,从而

fx)=2f)=2mf)=2m+1x,其中,m012

从而fx)∈[0+∞),正确;

f2n+1)=2n+12n1,假设存在n使f2n+1)=9,即存在x1x210,又,2x变化如下:2481632,显然不存在,所以该命题错误;

④根据前面的分析容易知道该选项正确;

综合有正确的序号是①②④.

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体..

1)求证:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,个人收入的提高,自201911日起,个人所得税起征点和税率作了调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:

1)假如小明某月的工资、薪金等税前收入为7500元,请你帮小明算一下调整后小明的实际收入比调整前增加了多少?

2)某税务部门在小明所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:

先从收入在的人群中按分层抽样抽取7人,再从中选3人作为新纳税法知识宣讲员,用随机变量表示抽到作为宣讲员的收入在元的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的两个周期函数,的周期为4的周期为2,且是奇函数.时,,其中k>0.若在区间(09]上,关于x的方程8个不同的实数根,则k的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有10个不同的产品,其中4个次品,6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心为,直线l过点且与x轴不重合,l交圆CD两点,过的平行线,交于点E.设点E的轨迹为.

1)求的方程;

2)直线相切于点M与两坐标轴的交点为AB,直线经过点M且与垂直,的另一个交点为N,当取得最小值时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的焦距为4,且过点

1)求椭圆的方程

2)设椭圆的上顶点为,右焦点为,直线与椭圆交于两点,问是否存在直线,使得的垂心,若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,讨论的单调性;

2)设函数,若存在不相等的实数,使得,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4 坐标系与参数方程选讲

在直角坐标系中,直线的参数方程为参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线极坐标方程为.

(1)求直线的普通方程以及曲线的参数方程;

(2)当时,为曲线上动点,求点到直线距离的最大值.

查看答案和解析>>

同步练习册答案