精英家教网 > 高中数学 > 题目详情
10.已知抛物线C:y2=2px(p>0)的焦点为F,且经过点A(1,2),过点F的直线与抛物线C交于P,Q两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)O为坐标原点,直线OP,OQ与直线x=-$\frac{p}{2}$分别交于S,T两点,试判断$\overrightarrow{FS}$•$\overrightarrow{FT}$是否为定值?若是,求出这个定值;若不是,请说明理由.

分析 (Ⅰ)把点A(1,2)代入抛物线C的方程,解得p=2,即可求出抛物线方程.
(Ⅱ)求出抛物线的准线方程x=-1,焦点F的坐标为(1,0),设出直线PQ的方程为x=ty+1,求出PQ坐标,求出直线OP的方程,直线OQ的方程,然后求出S,T的坐标,联立直线与抛物线方程,通过韦达定理,结合$\overrightarrow{FS}•\overrightarrow{FT}$化简求解即可.

解答 (本小题共13分)
解:(Ⅰ)把点A(1,2)代入抛物线C的方程y2=2px,得4=2p,解得p=2,
所以抛物线C的方程为y2=4x.….(4分)
(Ⅱ)因为p=2,所以直线$x=-\frac{p}{2}$为x=-1,焦点F的坐标为(1,0)
设直线PQ的方程为x=ty+1,$P(\frac{{{y_1}^2}}{4},{y_1})$,$Q(\frac{{{y_2}^2}}{4},{y_2})$,
则直线OP的方程为$y=\frac{4}{y_1}x$,直线OQ的方程为$y=\frac{4}{y_2}x$.….(5分)
由$\left\{\begin{array}{l}y=\frac{4}{y_1}x\\ x=-1\end{array}\right.$得$S(-1,-\frac{4}{y_1})$,同理得$T(-1,-\frac{4}{y_2})$. ….(7分)
所以$\overrightarrow{FS}=(-2,-\frac{4}{y_1})$,$\overrightarrow{FT}=(-2,-\frac{4}{y_2})$,则$\overrightarrow{FS}•\overrightarrow{FT}=4+\frac{16}{{{y_1}{y_2}}}$.        ….(9分)
由$\left\{\begin{array}{l}x=ty+1\\{y^2}=4x\end{array}\right.$得y2-4ty-4=0,所以y1y2=-4,….(11分)
则$\overrightarrow{FS}•\overrightarrow{FT}=4+\frac{16}{(-4)}$=4-4=0.
所以,$\overrightarrow{FS}•\overrightarrow{FT}$的值是定值,且定值为0.….(13分)

点评 本题考查抛物线的简单性质以及抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.“a=1”是“直线l1:ax+(a-1)y-1=0与直线l2:(a-1)x+(2a+3)y-3=0垂直”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知边长为2的正方形ABCD与菱形ABEF所在平面互相垂直,M为BC中点.
(Ⅰ)求证:EM∥平面ADF.
(Ⅱ)若∠ABE=60°,求四面体M-ACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{16}=1\;\;(a>0)$的左、右焦点分别为F1,F2,点P在椭圆C上,如果|PF1|+|PF2|=10,那么椭圆C的离心率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=1-$\frac{a}{{a}^{x}+b}$为定义在R上的奇函数.
(1)求f(x)的解析式;
(2)判断f(x)的单调性,并用定义证明;
(3)若f(lnm)+f(2lnn)≤1-3lnm,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x|x-2|
(Ⅰ)写出不等式f(x)>0的解集;
(Ⅱ)解不等式f(x)<x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}为等差数列,若a2+a6+a10=$\frac{π}{2}$,则tan(a3+a9)的值为(  )
A.0B.$\frac{\sqrt{3}}{3}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某校为了解高一年级学生身高情况,按10%的比例对全校700名高一学生按性别进行抽样检查,测得身高频数分布表如下:
表1:男生身高频数分布表
身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
频数25131352
表2:女生身高频数分布表
身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
频数1812531
则该校高一学生身高(单位:cm)在[165,180)的概率$\frac{4}{7}$.

查看答案和解析>>

同步练习册答案