精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知椭圆分别为左,右焦点,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线交椭圆于两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)在线段上是否存在点,使得以线段为邻边的四边形是菱形?若存在,求出实数的取值范围;若不存在,说明理由.
解:(1)由已知,所以
又因为,所以,--------------------------------2分
由余弦定理,----4分
所以,所以椭圆方程为.-------------------------------5分
(2)假设存在点满足条件,设,直线的方程为
联立:,则
,----------------------------------------------------------------------------7分


由题知
因为
所以,即
 ,
所以  ,---------------------------------------------------------------------10分
 ,又在线段上,则
故存在满足题意.-----------------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M、N,直线与抛物线C相切
(Ⅰ)求抛物线C的方程和点M、N的坐标;
(Ⅱ)求椭圆的方程和离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知函数

(1)若k=2,求方程的解;
(2)若关于x方程上有两个解,求k取值范围并证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
已知椭圆的中心为坐标原点O,焦点在x轴上,椭圆短半轴长为1,动点  在直线上。
(1)求椭圆的标准方程
(2)求以OM为直径且被直线截得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点FOM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.设直线与椭圆相交于两点,点关于轴对称点为
(1)求椭圆的方程;
(2)若以线段为直径的圆过坐标原点,求直线的方程;
(3)试问:当变化时,直线轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
设椭圆的左右焦点分别为是椭圆上的一点,,坐标原点到直线的距离为
(1)求椭圆的方程;
(2)设是椭圆上的一点,过点的直线轴于点,交轴于点,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

、设椭圆,双曲线,抛物线(其中的离心率分别为,则的值为                              (    )     
                 有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的一个焦点为,则等于          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左、右焦点分别为F1  F2,以F1 F2为直径的圆与椭圆在y轴左侧的部分交于A,B两点,且ΔF2AB是等边三角形,则椭圆的离心率为­______

查看答案和解析>>

同步练习册答案