精英家教网 > 高中数学 > 题目详情

【题目】定义函数,数列满足.

1)若,求

2)若且数列为周期函数,且最小正周期,求的值;

3)是否存在,使得成等比数列?若存在,求出所有这样的,若不存在,说明理由.

【答案】(1);(2;(3)存在,,理由见解析

【解析】

1)对于分别取n12an+1fan),nN*.去掉绝对值符号即可得出;

2)由已知可得,分三种情况讨论即可求值;

3)假设存在a1,使得a1a2an成等比数列,分类讨论当及当时,分别利用递推关系及等比数列的定义,得出a1的取值范围.

1

a2fa1)=f(﹣30)=

a3fa2)=f)=

2)由已知可得

由题意数列为周期函数,且最小正周期

则当时,a2fa1)=a3fa2)=f)=

得到(舍);

时,a2fa1)=a3fa2)=f)=

得到(舍);

时,a2fa1)=

a3fa2)=f fa1))=

a3a1,则

a1

综上得到

3)假设存在a1,使得a1a2an成等比数列.

①当时,a2fa1)=a3fa2)=

则公比为,∴a2,则,则满足题意;

②当a1时,则a2fa1)=,则必存在k使得

,由①知

,则,满足,满足公比为

综上可知:a1的取值范围为 [2+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,沿河有AB两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):

1)若在城镇A和城镇B单独建厂,共需多少总费用?

2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用的函数关系式,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,且AB1BC2 ABC=60°PA⊥平面ABCDAEPCE

下列四个结论:①ABAC;②AB⊥平面PAC;③PC⊥平面ABE;④BEPC.正确的个数是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)设,当时,对任意,存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是双曲线上的动点,是双曲线的焦点,M的平分线上一点,且,某同学用以下方法研究:延长于点N,可知为等腰三角形,且M的中点,得,类似地:点是椭圆上的动点,椭圆的焦点,M的平分线上一点,且的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ6sinθ,建立以极点为坐标原点,极轴为x轴正半轴的平面直角坐标系.直线l的参数方程是(t为参数)

(1)求曲线C的直角坐标方程;

(2)若直线l与曲线C相交于AB两点,且|AB|=,求直线的斜率k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为发挥体育核心素养的独特育人价值,越来越多的中学将某些体育项目纳入到学生的必修课程.惠州市某中学计划在高一年级开设游泳课程,为了解学生对游泳的兴趣,某数学研究学习小组随机从该校高一年级学生中抽取了100人进行调查.

1)已知在被抽取的学生中高一班学生有6名,其中3名对游泳感兴趣,现在从这6名学生中随机抽取3人,求至少有2人对游泳感兴趣的概率;

2)该研究性学习小组在调查中发现,对游泳感兴趣的学生中有部分曾在市级或市级以上游泳比赛中获奖,具体获奖人数如下表所示.若从高一班和高一班获奖学生中随机各抽取2人进行跟踪调查,记选中的4人中市级以上游泳比赛获奖的人数为,求随机变量的分布列及数学期望.

班级

市级

比赛获奖人数

2

2

3

3

4

4

3

3

4

2

市级以上

比赛获奖人数

2

2

1

0

2

3

3

2

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足,等比数列的首项为2,公比为.

1)若,问等于数列中的第几项?

2)若,数列的前项和分别记为的最大值为,试比较的大小.

查看答案和解析>>

同步练习册答案