精英家教网 > 高中数学 > 题目详情
已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,bn≠0
(1)求证数列{
1
bn
}是等差数列,并求数列{an}的通项公式;
(2)令cn=
1
bn 2n
,Tn为数列{cn}的前n项和,求证:Tn<2.
分析:(1)由题意可得an=bn+1,结合2an=1+anan+1,代入化简得:bn-bn+1=bnbn+1,从而可得
1
bn+1
-
1
bn
=1
,可证{
1
bn
}
是以1为首项,1为公差的等差数列,由等差数列的通项可求
1
bn
,进而可求
(Ⅱ)由(Ⅰ)知,Cn=
n
2n
,利用错位相减可求数列的和
解答:(1)证明:∵bn=an-1,bn≠0
∴an=bn+1
又2an=1+anan+1
∴2(1+bn)=1+(bn+1)(bn+1+1)
化简得:bn-bn+1=bnbn+1…(2分)
∵bn≠0
bn
bnbn+1
-
bn+1
bnbn+1
=1

1
bn+1
-
1
bn
=1

1
b1
=
1
a1-1
=1

{
1
bn
}
是以1为首项,1为公差的等差数列.…(4分)
1
bn
=1+(n-1)×1=n

bn=
1
n

an=1+
1
n
=
n+1
n
…(6分)
(Ⅱ)由(Ⅰ)知,Cn=
n
2n

∴Tn=
1
2
+
2
22
+…+
n
2n
①,
1
2
Tn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1
②…(9分)
①-②得:
1
2
Tn=
1
2
+
2
22
+…
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
n+2
2n+1
…(11分)
∴Tn=2-
n+2
2n
<2(12分)
点评:本题主要考查了利用数列的递推公式构造等差数列,求解数列的通项公式,错位相减求解数列的和是数列求和方法中的重点与难点,要注意掌握
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案