精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex,g(x)=mx+n.
(1)设h(x)=f(x)-g(x).
①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;
②当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;
(2)设函数r(x)=
1
f(x)
+
nx
g(x)
,且n=4m(m>0),求证:当x≥0时,r(x)≥1.
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)求出函数的导数,利用导数的几何意义即可得到结论.
(2)求出r(x)的表达式,求函数的导数,利用导数研究函数的单调性即可.
解答: 解:(1)①h(x)=f(x)-g(x)=ex-mx-n.
则h(0)=1-n,函数的导数f′(x)=ex-m,
则f′(0)=1-m,则函数在x=0处的切线方程为y-(1-n)=(1-m)x,
∵切线过点(1,0),∴-(1-n)=1-m,即m+n=2.
②当n=0时,h(x)=f(x)-g(x)=ex-mx.
若函数h(x)在(-1,+∞)上没有零点,
即ex-mx=0在(-1,+∞)上无解,
若x=0,则方程无解,满足条件,
若x≠0,则方程等价为m=
ex
x

设g(x)=
ex
x

则函数的导数g′(x)=
ex(x-1)
x2

若-1<x<0,则g′(x)<0,此时函数单调递减,则g(x)<g(-1)=-e-1
若x>0,由g′(x)>0得x>1,
由g′(x)<0,得0<x<1,即当x=1时,函数取得极小值,同时也是最小值,此时g(x)≥g(1)=e,
综上g(x)≥e或g(x)<-e-1
若方程m=
ex
x
无解,则-e-1≤m<e.
(2)∵n=4m(m>0),
∴函数r(x)=
1
f(x)
+
nx
g(x)
=
1
ex
+
nx
mx+n
=
1
ex
+
4x
x+4

则函数的导数r′(x)=-
1
ex
+
16
(x+4)2
=
16ex-(x+4)2
ex(x+4)2

设h(x)=16ex-(x+4)2
则h′(x)=16ex-2(x+4)=16ex-2x-8,
[h′(x)]′=16ex-2,
当x≥0时,[h′(x)]′=16ex-2>0,则h′(x)为增函数,即h′(x)>h′(0)=16-2=14>0,
即h(x)为增函数,∴h(x)≥h(0)=16-16=0,
即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,
故r(x)≥r(0)=
1
e0
+0=1

故当x≥0时,r(x)≥1成立.
点评:本题主要考查导数的几何意义的应用,以及利用导数研究函数单调性,在判断函数的单调性的过程中,多次使用了导数来判断函数的单调性是解决本题的关键,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin2(x-
π
6
)+sin2(x+
π
6
).
(1)求函数f(x)的最小正周期;
(2)若x∈[-
π
3
π
6
],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C所对的边分别为a,b,c. 
(1)若角A,B,C成等差数列,且sinAsinC=
2
2
,求tanAtanC的值; 
(2)若△ABC的三边长a,b,c是某个等差数列中的连续三项,且∠A≥120°,试用边a表示公差d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C的焦点分别为F1(-2
2
,0),F2(2
2
,0),且双曲线C经过点P(4
2
,2
7
).
(1)求双曲线C的方程;
(2)设O为坐标原点,若点A在双曲线C上,点B在直线x=
2
上,且
OA
OB
=0
,是点O为圆心的定圆恒与直线AB相切?若存在,求出该圆的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两定点F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a=3和a=5时,点P的轨迹分别为(  )
A、都是双曲线
B、都是射线
C、双曲线的一支和一条射线
D、都是双曲线的一支

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=
g(x)
x

(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求实数k的取值范围;
(3)若f(|2k-1|)+k•
2
|2k-1|
-3k=0有三个不同的实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直线PA与圆O相切于点A,PBC是过点O的割线,∠APC的角平分线交AC于点E,交AB于点D,点H是线段ED的中点,连接AH并延长PC交于点F.证明:A,E,F,D四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线的顶点是椭圆
x2
25
+
y2
9
=1
的中心,焦点是椭圆左焦点,该抛物线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:x2=4y,过焦点F任作一条直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).
(Ⅰ)证明:动点D在定直线上;
(Ⅱ)点P为抛物线C上的动点,直线l为抛物线C在P点处的切线,求点Q(0,4)到直线l距离的最小值.

查看答案和解析>>

同步练习册答案