精英家教网 > 高中数学 > 题目详情

【题目】某商场柜台销售某种产品,每件产品的成本为10元,并且每件产品需向该商场交a元(3≤a≤7)的管理费,预计当每件产品的售价为x元(20≤x≤25)时,一天的销售量为(x﹣30)2件. (Ⅰ)求该柜台一天的利润f(x)(元)与每件产品的售价x的函数关系式;
(Ⅱ)当每件产品的售价为多少元时,该柜台一天的利润f(x)最大,并求出f(x)的最大值g(a).

【答案】解:(Ⅰ)f(x)=(x﹣30)2(x﹣10﹣a),20≤x≤25 (Ⅱ)f'(x)=2(x﹣30)(x﹣10﹣a)+(x﹣30)2=(3x﹣2a﹣50)(x﹣30).
令f'(x)=0,则 或x=30,

∴①若 ,即3≤a≤5时,f'(x)≤0,x∈[20,25],
∴f(x)在[20,25]上是减函数.
=100(10﹣a)=1000﹣10a
②若5<a≤7时,
时,f'(x)>0,此时f(x)在 是增函数;
时,f'(x)<0,此时f(x)在 是减函数.
=
∴当3≤a≤5时,售价为20元时利润最大,最大利润g(a)为1000﹣10a;
当5<a≤7时,售价为 元时利润最大,最大利润g(a)为
【解析】(Ⅰ)求出每件产品的利润,乘以价格得到利润L(万元)与每件产品的售价x的函数关系式;(Ⅱ)求出利润函数的导函数,由a的范围得到导函数零点的范围,分类讨论原函数在[9,11]上的单调性,并求出a在不同范围内的利润函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A(4,﹣3),B(2,﹣1)和直线l:4x+3y﹣2=0.
(1)求在直角坐标平面内满足|PA|=|PB|的点P的方程;
(2)求在直角坐标平面内一点P满足|PA|=|PB|且点P到直线l的距离为2的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.

成绩分组

频数

频率

(160,165]

5

0.05

(165,170]

0.35

(170,175]

30

(175,180]

20

0.20

(180,185]

10

0.10

合计

100

1


(1)请先求出频率分布表中①、②位置相应的数据,再画出频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴, 分别是x轴、y轴正方向同向的单位向量,若向量 =x +y ,则把有序数对(x,y)叫做向量 在坐标系xOy中的坐标,在此坐标系下,假设 =(﹣2,2 ), =(2,0), =(5,﹣3 ),则下列命题不正确的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形, 平面 中点.

I)求证:直线平面

II)求证:直线平面

III)在上是否存在一点,使得二面角的大小为,若存在,确定的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(0, )上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)tanx成立,则( )
A.f( )> f(
B.f(1)<2f( )sin1
C.f( )>f(
D. f( )<f(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2+2ax+4ay=0的半径为 ,则a等于(
A.5
B.﹣5或5
C.1
D.1或﹣1

查看答案和解析>>

同步练习册答案