科目:高中数学 来源:2012-2013学年湖北省仙桃市高三第二次月考理科数学试卷(解析版) 题型:解答题
(本小题共14分)已知函数其中常数.
(1)当时,求函数的单调递增区间;
(2)当时,若函数有三个不同的零点,求m的取值范围;
(3)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省高三上学期期末理科数学试卷 题型:解答题
已知函数其中常数
(1)当时,求函数的单调递增区间;
(2)当时,给出两类直线:与,其中为常数,判断这两类直线中是否存在的切线,若存在,求出相应的或的值,若不存在,说明理由.
(3)设定义在上的函数在点处的切线方程为,当若在内恒成立,则称为函数的“类对称点”,当时,试问是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年四川省高三12月月考理科数学卷 题型:选择题
设,若区间是函数的单调递增区间,将的图象按向量的方向平移得到一个新的函数的图象,则的一个单调
递减区间可以是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com