精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,,平面平面,点在棱.

的中点,证明:.

与平面所成角的正弦值为,求.

【答案】证明见解析;.

【解析】

的中点,连接.利用勾股定理求证,进而得,最后证出.

为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系,设,设平面的法向量为,根据与平面所成角的正弦值为,列式求得,进而求.

解:证明:取的中点,连接.因为,所以.

又因为平面平面,且相交于,所以平面

所以.

因为,所以

所以,所以

所以,且的中点,所以.

解:如图,以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系,由已知得

.

设平面的法向量为.

,得

可取

所以

解得(舍去),,则

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为

1)写出曲线C1C2的直角坐标方程;

2)已知P为曲线C2上的动点,过点P作曲线C1的切线,切点为A,求|PA|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在国家批复成立江北新区后,南京市政府规划在新区内的一条形地块上新建一个全民健身中心,规划区域为四边形ABCD,如图,点B在线段OA上,点CD分别在射线OPAQ上,且AC关于BD对称.已知

1)若,求BD的长;

2)问点C在何处时,规划区域的面积最小?最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的极值点的个数;

2)设函数为曲线上任意两个不同的点,设直线的斜率为,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线上一点作直线交抛物线E于另一点N.

1)若直线MN的斜率为1,求线段的长.

2)不过点M的动直线l交抛物线EAB两点,且以AB为直径的圆经过点M,问动直线l是否恒过定点.如果有求定点坐标,如果没有请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】厂家在产品出厂前,需对产品做检验,第一次检测厂家的每件产品合格的概率为,如果合格,则可以出厂;如果不合格,则进行技术处理,处理后进行第二次检测.每件产品的合格率为,如果合格,则可以出厂,不合格则当废品回收.

求某件产品能出厂的概率;

若该产品的生产成本为/件,出厂价格为/件,每次检测费为/件,技术处理每次/件,回收获利/.假如每件产品是否合格相互独立,记为任意一件产品所获得的利润,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为,且直线与曲线C有两个不同的交点.

1)求实数a的取值范围;

2)已知M为曲线C上一点,且曲线C在点M处的切线与直线垂直,求点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某便利店统计了今年第一季度各个品类的销售收入占比和净利润占比,并将部分品类的这两个数据制成如下统计图(注:销售收入占比,净利润占比,净利润销售收入成本各类费用),现给出下列判断:

①该便利店第一季度至少有一种品类是亏损的;

②该便利店第一季度的销售收入中“生鲜类”贡献最大;

③该便利店第一季度“非生鲜食品类”的净利润一定高于“日用百货”的销售收入;

④该便利店第一季度“生鲜类”的销售收入比“非生鲜食品类”的销售收入多.

则上述判断中正确的是(

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点轴下方(不含轴)一点,抛物线上存在不同的两点满足,其中为常数,且两点均在上,弦的中点为

1)若点坐标为时,求弦所在的直线方程;

2)在(1)的条件下,如果过点的直线与抛物线只有一个交点,过点的直线与抛物线也只有一个交点,求证:若的斜率都存在,则的交点在直线上;

3)若直线交抛物线于点,求证:线段的比为定值,并求出该定值.

查看答案和解析>>

同步练习册答案