精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.
(1)证明 平面
(2)证明平面EFD;
(3)求二面角的大小.

(1)略  (2)略  (3)
解:如图所示建立空间直角坐标系,D为坐标原点.设(1)证明:连结AC,AC交BD于G.连结EG.

依题意得底面ABCD是正方形, 是此正方形的中心,
故点G的坐标为. 这表明.而平面EDB且平面EDB,平面EDB。
(2)证明:依题意得。又 , 由已知,且所以平面EFD.
(3)解:设点F的坐标为
从而所以
由条件知,    解得
点F的坐标为 且
,即,故是二面角的平面角.

,所以,二面角C—PC—D的大小为
本试题主要考查了立体几何中线面平行的判定,线面垂直的判定,以及二面角的求解的综合运用试题。体现了运用向量求解立体几何的代数手法的好处。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知多面体中,平面平面的中点

(1)求证:
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)
正方体的棱长为的交点,上一点,且.(Ⅰ)求证:平面
(Ⅱ)求异面直线所成角的余弦值;
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在棱长为1的正方体ABCD-A1B1C1D1中,MN分别是A1B1BB1的中点,那么直线AMCN所成角的余弦值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.

(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问多大时,AM⊥平面PDB可能成立?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(I)求证:A1C⊥平面BCDE;
(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,己知三棱柱的侧棱与底面垂直,,MN分别是的中点,P点在上,且满足
(I)证明:
(II)当取何值时,直线PN与平面ABC所成的角最大?并求出该最大角的正切值;
(III)  在(II)条件下求P到平而AMN的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱中,平面,底面是边长为1的正方形,侧棱
(Ⅰ)证明:
(Ⅱ)若棱上存在一点,使得
当二面角的大小为时,求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的底面是边长为3的正三角形,侧棱AA1垂直于底面ABC,AA1=,D是CB延长线上一点,且BD=BC.
(1)求证:直线BC1∥平面AB1D;
(2)求二面角B1-AD-B的大小;
(3)求三棱锥C1-ABB1的体积。

查看答案和解析>>

同步练习册答案