精英家教网 > 高中数学 > 题目详情
9.关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2$\sqrt{2}$,求圆的方程.

分析 设出圆的标准方程,由已知条件列出方程组,求出圆心和半径,由此能求出圆的方程.

解答 解:设所求圆的方程为(x-a)2+(y-b)2=r2,则圆心为(a,b),半径为r,
∵A(2,3)关于直线x+2y=0的对称点A′仍在圆上,
∴圆心(a,b)在直线x+2y=0上,
∴a+2b=0,①
且(2-a)2+(3-b)2=r2,②
${r}^{2}-(\frac{|a-b+1|}{\sqrt{2}})^{2}=(\sqrt{2})^{2}$,
由①②③得$\left\{\begin{array}{l}{a=6}\\{b=-3}\\{{r}^{2}=52}\end{array}\right.$或$\left\{\begin{array}{l}{a=14}\\{b=-7}\\{{r}^{2}=244}\end{array}\right.$,
∴圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.

点评 本题考查圆的方程的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知复数z=3+$\frac{3-4i}{4+3i}$,则$\overline z$=(  )
A.3-iB.2-3iC.3+iD.2+3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≤1”的否定为(  )
A.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$>1B.?x0∈R,3x0+$\frac{1}{{3}^{{x}_{0}}}$≥1
C.?x∈R,3x+$\frac{1}{{3}^{{x}$>1D.?x∈R,3x+$\frac{1}{{3}^{{x}$<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}为等差数列,且a3=5,a5=5,数列{bn}的前n项的和为Sn,且2Sn=1-bn(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知|$\overrightarrow a|=4,|\overrightarrow b|=3,(2\overrightarrow a-3\overrightarrow b)•(2\overrightarrow a+\overrightarrow b)=61$.
(1)求$\overrightarrow a$与$\overrightarrow b$的夹角θ;
(2)若$\vec c=t\vec a+(1-t)\vec b$,且$\vec b•\vec c=0$,求$|{\vec c}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如果复数z=$\frac{2+ai}{1+i}({a∈R})$为纯虚数,则|z|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.抛物线x2=2py(p>0)的焦点为F,其准线与双曲线x2-y2=1相交于A,B两点,若△ABF为等边三角形,则p=$2\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知长方体ABCD-A1B1C1D1,P为棱A1B1上一点,BC=10,CD=10,CC1=4,则AP+PC1的最小值为$2\sqrt{74}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知0≤x≤2,$\sqrt{x(2-x)}$的最大值是1.

查看答案和解析>>

同步练习册答案