精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0,则不等式xf(x+1)<0的解集为

【答案】(0,1)∪(﹣3,﹣1)
【解析】解:∵函数f(x)定义在R上的奇函数,且在(﹣∞,0)上是增函数,又f(2)=0, ∴f(x)在(0,+∞)上是增函数,且f(﹣2)=﹣f(2)=0,
∴当x>2或﹣2<x<0时,f(x)>0,当x<﹣2或0<x<2时,f(x)<0,(如图)
则不等式xf(x+1)<0等价为



解得0<x<1或﹣3<x<﹣1,
故不等式的解集为(0,1)∪(﹣3,﹣1),
所以答案是:(0,1)∪(﹣3,﹣1)

【考点精析】掌握奇偶性与单调性的综合是解答本题的根本,需要知道奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆和直线 ,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面是边长为 的正方形,AA1=3,点F在棱B1B上运动.

(1)若三棱锥B1﹣A1D1F的体积为 时,求异面直线AD与D1F所成的角
(2)求异面直线AC与D1F所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一张纸沿直线l对折一次后,点A(0,4)与点B(8,0)重叠,点C(6,8)与点D(m,n)重叠.
(1)求直线l的方程;
(2)求m+n的值;
(3)直线l上是否存在一点P,使得||PB|﹣|PC||存在最大值,如果存在,请求出最大值,以及此时点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1) 关于的方程在区间上有解,求的取值范围;

(2) 当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为D,若存在非零实数m,使得对于任意x∈M(MD),有(x﹣m)∈D且f(x﹣m)≤f(x),则称f(x)为M上的m度低调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2 , 且f(x)为R上的5度低调函数,那么实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数, ,函数 (其中是自然对数的底数).

(1)过坐标原点作曲线的切线,设切点为,求证:

(2)令,若函数在区间上是单调函数,求的取值范围.

查看答案和解析>>

同步练习册答案