分析 (Ⅰ)甲答对题目数Y~B(4,$\frac{4}{5}$),由此能求出甲恰有2个题目答对的概率.
(Ⅱ)由题意知乙答对的题目数X的可能取值为2,3,4,分别求出相应的概率,能求出X的分布列.
(Ⅲ)由Xr分布列求出乙平均答对的题目数EX,由甲答对题目数Y~B(4,$\frac{4}{5}$),求出甲平均答对的题目数EY,从而得到甲平均答对的题目数小于乙平均答对的题目数.
解答 解:(Ⅰ)∵甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是$\frac{4}{5}$,
∴选中的4个题目甲恰有2个题目答对的概率P=${C}_{4}^{2}(\frac{4}{5})^{2}(\frac{1}{5})^{2}$=$\frac{96}{625}$.
(Ⅱ)由题意知乙答对的题目数X的可能取值为2,3,4,
P(X=2)=$\frac{{C}_{2}^{2}{C}_{8}^{2}}{{C}_{10}^{4}}$=$\frac{28}{210}$=$\frac{2}{15}$,
P(X=3)=$\frac{{C}_{2}^{1}{C}_{8}^{3}}{{C}_{10}^{4}}$=$\frac{112}{210}$=$\frac{8}{15}$,
P(X=4)=$\frac{{C}_{8}^{4}}{{C}_{10}^{4}}$=$\frac{70}{210}$=$\frac{1}{3}$,
∴X的分布列为:
X | 2 | 3 | 4 |
P | $\frac{2}{15}$ | $\frac{8}{15}$ | $\frac{1}{3}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | f(x)=9x+8 | B. | f(x)=3x+2 | ||
C. | f(x)=-3x-4 | D. | f(x)=3x+2或f(x)=-3x-4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -1<a<2 | B. | 1≤a<3 | C. | a>0 | D. | 1<a<3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1),(1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | an=6n+8 | B. | an=6n+5 | C. | an=3n+8 | D. | an=3n+5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com