.(本题满分12分)如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(1)求证:AB1// 面BDC1;
(2)求二面角C1—BD—C的余弦值;
(3)在侧棱AA1上是否存在点P,使得
CP⊥面BDC1?并证明你的结论.
(I)证明:
连接B1C,与BC1相交于O,连接OD
∵BCC1B1是矩形,∴O是B1C的中点.又D是AC的中点,
∴OD//AB1.∵AB1面BDC1,OD面BDC1
∴AB1//面BDC1.
(II)解:如力,建立空间直角坐标系,则
C1(0,0,0),B(0,3,2),C(0,3,0),A(2,3,0), D(1,3,0)
设=(x1,y1,z1)是面BDC1的一个法向量,则
即.…………6分
易知=(0,3,0)是面ABC的一个法向量.
∴二面角C1—BD—C的余弦值为
(III)假设侧棱AA1上存在一点P(2,y,0)(0≤y≤3),使得CP⊥面BDC1.
则
∴方程组无解.∴假设不成立. ∴侧棱AA1上不存在点P,使CP⊥面BDC1.
【解析】略
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com