精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系内,已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)当a∈( ,3)时,求直线AC的倾斜角α的取值范围;
(2)当a=2时,求△ABC的BC边上的高AH所在直线方程l.

【答案】
(1)解:KAC= =﹣

a∈( ,3),则KAC∈(﹣1,﹣ ),

k=tanα,又∵α∈[0,π],

∴α∈( );


(2)解:KBC= =

∵AH为高,∴AH⊥BC,

∴KAHKBC=﹣1,

∴KAH=﹣3;

又∵l过点A(1,2),

∴l:y﹣2=﹣3(x﹣1),

即3x+y﹣5=0.


【解析】(1)求出AC的斜率,根据a的范围,求出AC的斜率的范围,从而求出倾斜角的范围即可;(2)求出BC的斜率,根据垂直关系求出AH的斜率,代入点斜式方程即可求出l.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为 ;类似的,在空间直角坐标系O﹣xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y,z)的集合对应的空间几何体的体积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.

(1)证明:∠CBD=∠DBA;
(2)若AD=3DC,BC= ,求⊙O的直径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若离散型随机变量X的分布列如图,则常数c的值为(

X

0

1

P

9c2﹣c

3﹣8c


A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.
(1)求证:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图所示,由此推断,当n=6时,至少有两个黑色正方形相邻的着色方案共有( )种.
A.21
B.32
C.43
D.54

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若曲线在点处的切线方程为,求ab的值;

2)如果是函数的两个零点, 为函数的导数,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+x2
(1)求x<0时,f(x)的解析式;
(2)问是否存在这样的非负数a,b,当x∈[a,b]时,f(x)的值域为[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案