精英家教网 > 高中数学 > 题目详情
12.已知an=($\frac{1}{3}$)n,把数列{an}的各项排列成如下的三角形状:记A(m,n)表示第m行的第n个数,则A(11,2)(  )
A.($\frac{1}{3}$)67B.($\frac{1}{3}$)68C.($\frac{1}{3}$)101D.($\frac{1}{3}$)102

分析 ①A(11,2)为三角形状的第11行的第2个数,根据题意得第11行的最后一个数是a121
②且有2×11-1=21个项,得到第11行得第一项为101+2-1=102,所以为a102求出即可

解答 解:由A(m,n)表示第m行的第n个数可知,A(11,2)表示第11行的第2个数,
根据图形可知:①每一行的最后一个项的项数为行数的平方,所以第11行的最后一个项的项数为112=121,即为a121
②每一行都有2n-1个项,所以第11行有2×11-1=21个项,得到第11行第一个项为121-21+1=101,所以第12项的项数为101+2-1=102;
所以A(11,2)=a102=($\frac{1}{3}$)102
故选:D.

点评 考查学生利用数列的递推式解决数学问题的能力,会根据图形归纳总计得到一组数的规律.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,在正方形ABCD-A1B1C1D1中:
①二面角A1-AB-D的大小为$\frac{π}{2}$;
②二面角D1-AB-D的大小为$\frac{π}{4}$;
③二面角D1-BC-D的大小为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线$\frac{{x}^{2}}{8-k}$+$\frac{{y}^{2}}{4-k}$=1的焦点坐标是(  )
A.(0,±$\sqrt{12-2k}$)B.(±$\sqrt{12-2k}$,0)C.(0,±2)D.(±2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一圆锥的底面直径、高和一圆柱的底面直径直径、高均是d,那么,圆锥的全面积与圆柱的全面积之比为$\frac{1+2\sqrt{5}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.正方体ABCD-A1B1C1D1中,求二面角D-BC1-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=$\frac{1}{2}$CD=1.现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形AEFD翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.
(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE;
(3)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列说法中不正确的是(  )
A.“所有金属都能导电,铁是金属,所以铁能导电”这种推理属于演绎推理
B.已知数据x1,x2,…,xn的方差是4,则数据-3x1+2015,-3x2+2015,…,-3xn+2015的标准差是6
C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好
D.若变量y和x之间的相关系数r=-0.9362,则变量y和x之间具有很强的线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)的值域是[-2,3],则函数f(x-2)的值域为(  )
A.[-4,1]B.[0,5]C.[-4,1]∪[0,5]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正方体OABC-O1A1B1C1的棱长为2,对角线O1B上有一点P,棱B1C1上有一点Q.
(1)当Q为B1C1的中点,点P在对角线O1B上运动时,试求|PQ|的最小值.
(2)当Q在B1C1上运动,点P在对角线O1B上运动时,试求|PQ|的最小值.

查看答案和解析>>

同步练习册答案