分析 (Ⅰ)由已知可证DG⊥EF,又EF∥DC,可证DG⊥DC,由面面垂直证明DG⊥平面ABCD,即可证明DG⊥BC.
(Ⅱ)过M作MN∥AB交AD于N,连接FN,证明EG∥MN,GM∥FN,可得四边形FGMN是平行四边形,由已知可求$\frac{DM}{DB}=\frac{1}{6}$,进而可求$\frac{DM}{MB}=\frac{1}{5}$.
解答 (本题满分为12分)
解:(Ⅰ)证明:∵DE=DF,G是EF的中点,
∴DG⊥EF,
又∵EF∥DC,
∴DG⊥DC,…(2分)
又∵平面ABCD⊥平面CDEF,平面ABCD∩平面CDEF=CD,
∴DG⊥平面ABCD,
又∵BC在平面ABCD内,
∴DG⊥BC.…(6分)
(Ⅱ)过M作MN∥AB交AD于N,连接FN,
∵EG∥DC,DC∥AB,
∴EG∥MN,
又∵GM∥平面ADF,
∴GM∥FN,
∴四边形FGMN是平行四边形,…(9分)
∴$MN=FG=\frac{1}{2}EF=\frac{1}{6}AB$,
∵$\frac{DM}{DB}=\frac{1}{6}$,
∴$\frac{DM}{MB}=\frac{1}{5}$.…(12分)
点评 本题考查了空间几何体的性质,空间直线的位置关系,直线平面的平行关系,考查了转化思想和数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 400π | B. | 300π | C. | 200π | D. | 100π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | c<b<a | B. | a<b<c | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 不确定 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com