精英家教网 > 高中数学 > 题目详情

【题目】已知圆的圆心轴上,半径为1,直线被圆所截的弦长为,且圆心在直线的下方.

(1)求圆的方程;

(2)设,若圆的内切圆,求的面积的最大值和最小值.

【答案】(1)(2)最大值为,最小值

【解析】试题分析:(1)由于圆的半径为,设圆心为,利用弦长为,则圆心到直线的距离为,以此建立方程,求得,所以圆的方程为;(2)设的斜率为的斜率为,由此写出直线的方程,联立求得点的横坐标, ,面积的表达式,利用圆与直线相切,求得,同理求得,代入面积的表达式,利用二次函数的图像与性质,求得最小值与最大值.

试题解析:

1)设圆心,由已知得的距离为

,又的下方,

故圆的方程为

2)由题设的斜率为的斜率为,则直线的方程为,直线的方程为

由方程组,得点的横坐标为

由于圆相切,所以

同理,

的面积的最大值为,最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,以轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为

1)求曲线的直角坐标方程并指出其形状;

2)设是曲线上的动点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上周某校高三年级学生参加了数学测试,年部组织任课教师对这次考试进行成绩分析.现从中抽取80名学生的数学成绩(均为整数)的频率分布直方图如图所示.

(Ⅰ)估计这次月考数学成绩的平均分和众数;

(Ⅱ)假设抽出学生的数学成绩在段各不相同,且都超过94分.若将频率视为概率,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数字中任意抽取2个数,有放回地抽取3次,记这3次抽取中恰好有两名学生的数学成绩的次数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数在定义域内给定区间上存在),满足,则称函数上的“平均值函数”, 是它的一个均值点.如上的平均值函数,0就是他的均值点.

(1)判断函数在区间上是否为平均值函数?若是,求出它的均值点;若不是,请说明理由;

(2)若函数是区间上的平均值函数,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, 对边分别为,已知.

1)若的面积等于,求

2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 平分 的中点, .

(1)证明: 平面.

(2)证明: 平面.

(3)求直线与平面所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形ABCD中,AB=1,AD=。现将长方形沿对角线BD折起,使AC=a,得到一个四面体ABCD,如图所示.

(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.

(2)当四面体ABCD的体积最大时,求二面角ACDB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列是关于函数yf(x),x∈[ab]的几个命题:

①若x0∈[ab]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;

②若x0f(x)在[ab]上的零点,则可用二分法求x0的近似值;

③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;

④用二分法求方程的根时,得到的都是近似值.

那么以上叙述中,正确的个数为 (  )

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

同步练习册答案