精英家教网 > 高中数学 > 题目详情

【题目】小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.

(1)把y表示为x的函数;

(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;

(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)

【答案】(1)(2)30名员工(3)销售单价定为55或70元时,该专卖店月利润最大

【解析】

(1)利用待定系数法分别求出当时的解析式,进而可得所求结果;(2)设该店有职工m名,根据题意得到关于m的方程,求解可得所求;(3)由题意得到利润的函数关系式,根据分段函数最值的求法可得所求

(1)当时,设

由题意得点在函数的图象上,

,解得

∴当时,

同理,当时,

∴所求关系式为

(2)设该店有职工m名,

当x=50时,该店的总收入为元,

又该店的总支出为1000m+10000元,

依题意得40000=1000m+10000,

解得:m=30.

所以此时该店有30名员工.

(3)若该店只有20名职工,

则月利润

①当时,

所以x=55时,S取最大值15000元;

②当时,

所以x=70时,S取最大值15000元;

故当x=55或x=70时,S取最大值15000元,

即销售单价定为55或70元时,该专卖店月利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinx+cosωx(ω>0)的图象与x轴交点的横坐标依次构成一个公差为 的等差数列,把函数f(x)的图象沿x轴向左平移 个单位,得到函数g(x)的图象,则(
A.g(x)是奇函数
B.g(x)关于直线x=﹣ 对称
C.g(x)在[ ]上是增函数
D.当x∈[ ]时,g(x)的值域是[2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3mx﹣ ﹣(3+m)lnx,若对任意的m∈(4,5),x1 , x2∈[1,3],恒有(a﹣ln3)m﹣3ln3>|f(x1)﹣f(x2)|成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:

微信控

非微信控

合计

男性

26

24

50

女性

30

20

50

合计

56

44

100

(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?

(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;

(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.

参考公式: ,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:①函数上的值域为;②函数是奇函数;③函数上是减函数;其中正确的个数为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.

(1)求最后取出的是正品的概率;

(2)已知每检测一件产品需要费用100元,设表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的定义域为A,若时总有为单函数.例如,函数=2x+1)是单函数.下列命题:

函数=xR)是单函数;为单函数,fAB为单函数,则对于任意bB,它至多有一个原象;

函数fx)在某区间上具有单调性,则fx)一定是单函数.其中的真命题是 .(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某超市,随机调查了100名顾客购物时使用手机支付支付的情况,得到如下的列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为.

(1)根据已知条件完成列联表,并根据此资料判断是否有99.9%的把握认为“超市购物用手机支付与年龄有关”.

(2)现按照“使用手机支付”和“不使用手机支付”进行分层抽样,从这100名顾客中抽取容量为5的样本,求“从样本中任选3人,则3人中至少2人使用手机支付”的概率.

青年

中老年

合计

使用手机支付

60

不使用手机支付

28

合计

100

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R,c∈[0,2π),若对任意实数x都有2sin(3x﹣ )=asin(bx+c),定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是d个,则满足条件的有序实数组(a,b,c,d)的组数为(
A.7
B.11
C.14
D.28

查看答案和解析>>

同步练习册答案