【题目】已知函数(a为实常数).
(1)若,作函数的图象并写出单调减区间;
(2)当时,设在区间上的最小值为,求的表达式;
(3)当时对于函数和函数,若对任意的,总存在使成立,求实数m的值.
科目:高中数学 来源: 题型:
【题目】尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量(单位:焦耳)与地震里氏震级之间的关系为.
(1)已知地震等级划分为里氏级,根据等级范围又分为三种类型,其中小于级的为“小地震”,介于级到级之间的为“有感地震”,大于级的为“破坏性地震”若某次地震释放能量约焦耳,试确定该次地震的类型;
(2)2008年汶川地震为里氏级,2011年日本地震为里氏级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍? (取)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小电子产品2018年的价格为9元/件,年销量为件,经销商计划在2019年将该电子产品的价格降为元/件(其中),经调查,顾客的期望价格为5元/件,经测算,该电子产品的价格下降后年销量新增加了件(其中常数).已知该电子产品的成本价格为4元/件.
(1)写出该电子产品价格下降后,经销商的年收益与实际价格的函数关系式:(年收益=年销售收入-成本)
(2)设,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.
(1)求A;
(2)若△ABC的面积S=c2,求sin C的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l:y=x+4,动圆⊙O:x2+y2=r2(1<r<2),菱形ABCD的一个内角为60°,顶点A、B在直线l上,顶点C、D在⊙O上.当r变化时,求菱形ABCD的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某辆汽车以千米小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求时,每小时的油耗(所需要的汽油量)为升,其中为常数,且.
(1)若汽车以120千米小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求的取值范围;
(2)求该汽车行驶100千米的油耗的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】类似于平面直角坐标系,定义平面斜坐标系:设数轴、的交点为,与、轴正方向同向的单位向量分别是、,且与的夹角为,其中,由平面向量基本定理:对于平面内的向量,存在唯一有序实数对,使得,把叫做点在斜坐标系中的坐标,也叫做向量在斜坐标系中的坐标,记为,在平面斜坐标系内,直线的方向向量、法向量、点方向式方程、一般式方程等概念与平面直角坐标系内相应概念以相同方式定义,如时,方程表示斜坐标系内一条过点,且方向向量为的直线.
(1)若,,,求;
(2)若,已知点和直线;
①求的一个法向量;
②求点到直线的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com