【题目】已知f(x)= ,且g(x)=f(x)+ 有三个零点,则实数a的取值范围为 .
科目:高中数学 来源: 题型:
【题目】已知双曲线 ﹣ =1(a>0,b>0)的左右焦点分别为F1 , F2 , P为双曲线右支上一点(异于右顶点),△PF1F2的内切圆与x轴切于点(2,0),过F2作直线l与双曲线交于A,B两点,若使|AB|=b2的直线l恰有三条,则双曲线离心率的取值范围是( )
A.(1, )
B.(1,2)
C.( ,+∞)
D.(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某城镇由6条东西方向的街道和7条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道.现要从城镇的A处走到B处,使所走的路程最短,最多可以有种不同的走法.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,设圆的方程为(x+2 )2+y2=48,F1是圆心,F2(2 ,0)是圆内一点,E为圆周上任一点,线EF2的垂直平分线EF1的连线交于P点,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设直线l(与x轴不重合)与曲线C交于A、B两点,与x轴交于点M.
(i)是否存在定点M,使得 + 为定值,若存在,求出点M坐标及定值;若不存在,请说明理由;
(ii)在满足(i)的条件下,连接并延长AO交曲线C于点Q,试求△ABQ面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx+x2(a为实常数).
(Ⅰ)若a=﹣2,求证:函数f(x)在(1,+∞)上是增函数;
(Ⅱ)求函数f(x)在[1,e]上的最小值及相应的x值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex+2ax.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间[1,+∞)上的最小值为0,求a的值;
(3)若对于任意x≥0,f(x)≥e﹣x恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A,B分别为椭圆C: + =1(a>b>0)在x轴正半轴,y轴正半轴上的顶点,原点O到直线AB的距离为 ,且|AB|= .
(1)求椭圆C的离心率;
(2)直线l:y=kx+m(﹣1≤k≤2)与圆x2+y2=2相切,并与椭圆C交于M,N两点,求|MN|的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com