精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象与轴相切.

1)求的值.

2)求证:

3)若,求证:

【答案】1;(2)证明见解析;(3)证明见解析.

【解析】

1)先设切点,根据导数几何意义列方程组,解得结果;

2)先化简不等式为,再构造函数,利用导数求其最大值,根据最大值证不等式;

3)先求导数,再求导函数零点,利用(2)证,最后利用导数求其单调性与最值,根据最值证得不等式.

1)解:设切点,则

2)证明:∵,∴等价于

,则

时,单调递增;

时,单调递减.

,即,∴

3)证明:设

,得

由(2)得,当时, ,所以当时,得

时, ,以代换,得,有

所以当时,得

∴当时,有

时,单调递增;

时,单调递减.

又∵,∴当时,,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(Ⅰ)求直线的直角坐标方程与曲线的普通方程;

(Ⅱ)已知点设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:

单价(千元)

1

1.5

2

2.5

3

销量(百件)

10

8

7

6

已知.

(Ⅰ)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个好数据,现从5个销售数据中任取3个,求其中好数据的个数的分布列和数学期望.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点分别为双曲线的左、右焦点,双曲线的离心率为,点在双曲线上,不在轴上的动点与动点关于原点对称,且四边形的周长为.

(1)求动点的轨迹的方程;

(2)过点的直线交的轨迹两点,上一点,且满足,其中,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为(其中为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)若,求直线与曲线的交点的直角坐标;

2)若点在曲线上,且到直线距离的最大值为,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点为抛物线外一点,过点作抛物线的两条切线,切点分别为

(Ⅰ)若点,求直线的方程;

(Ⅱ)若点为圆上的点,记两切线的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上两定点,动点为常数).

(Ⅰ)说明动点的轨迹(不需要求出轨迹方程);

(Ⅱ)当时,动点的轨迹为曲线,过的直线交于两点,已知点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把方程表示的曲线作为函数的图象,则下列结论正确的是(

R上单调递减

的图像关于原点对称

的图象上的点到坐标原点的距离的最小值为3

④函数不存在零点

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

同步练习册答案