精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若,求的单调区间;

2)证明:(i

ii)对任意恒成立.

【答案】1的单调递增区间为的单调递减区间为. 2)(i)证明见解析(ii)证明见解析

【解析】

1)将代入函数解析式,并求得导函数,由导函数的符号即可判断的单调区间;

2)(i)构造函数并求得,利用的单调性求得最大值,即可证明不等式成立.;(ii)由(i)可知将不等式变形可得成立,构造函数,因式分解后解一元二次不等式即可证明恒成立.

1)若),

,得 的单调递增区间为.

,得,则的单调递减区间为.

2)证明:(i)设

),

,得

,得.

从而,即.

ii)函数

由(i)可知

,所以,当时取等号;

所以当时,则

,令

时,.

则当时,

故对任意恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】.

1)若,且为函数的一个极值点,求函数的单调递增区间;

2)若,且函数的图象恒在轴下方,其中是自然对数的底数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

时,求函数的单调增区间;

若函数上是增函数,求实数a的取值范围;

,且对任意,都有,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点,点是圆上任意一点,线段的垂直平分线交线段于点.

1)求点的轨迹方程.

2)设点的轨迹上异于顶点的任意两点,以为直径的圆过点.求证直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,准线为为抛物线过焦点的弦,已知以为直径的圆与相切于点.

1)求的值及圆的方程;

2)设上任意一点,过点的切线,切点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对 100 辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.

(Ⅰ)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;

(Ⅱ)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-m|-|2x+2m|m0).

(Ⅰ)当m=1时,求不等式fx)≥1的解集;

(Ⅱ)若xRtR,使得fx+|t-1||t+1|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数).

(1)当时,上是单调递增函数,求的取值范围;

(2)当时,讨论函数的单调区间;

(3)对于任意给定的正实数,证明:存在实数,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,分别为棱的中点.

(1)求证:平面

(2)若,求四棱锥的体积.

查看答案和解析>>

同步练习册答案