精英家教网 > 高中数学 > 题目详情
函数f(x)=sin (ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.
(1)若φ=,点P的坐标为(0,),则ω=   
(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为   
【答案】分析:(1)先利用导数的运算性质,求函数f(x)的导函数f′(x),再将φ=,f′(0)=代入导函数解析式,即可解得ω的值;
(2)先利用定积分的几何意义,求曲线段与x轴所围成的区域面积,再求三角形ABC的面积,最后利用几何概型概率计算公式求面积之比即可得所求概率
解答:解:(1)∵函数f(x)=sin (ωx+φ)的导函数y=f′(x)=ωcos(ωx+φ),其中φ=,过点P(0,),
∴ωcos=
∴ω=3
故答案为 3
(2)∵f′(x)=ωcos(ωx+φ),
∴曲线段与x轴所围成的区域面积为[-f′(x)]dx=-f(x)=-sin-(-sin)=2
三角形ABC的面积为=
∴在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为P==
故答案为
点评:本题主要考查了f(x)=Asin (ωx+φ)型函数的图象和性质,导数运算及导函数与原函数的关系,定积分的几何意义,几何概型概率的计算方法,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角a的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,
3
).
(1)定义行列式
.
ab
cd
.
=a•d-b•c,解关于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函数f(x)=sin(x+a)+cos(x+a)(x∈R)的图象关于直线x=x0对称,求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象过点(
π8
,-1).
(1)求φ;  
(2)求函数y=f(x)的周期和单调增区间;
(3)在给定的坐标系上画出函数y=f(x)在区间,[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+?)(x∈R,ω>0,0≤?<2π)的部分图象如图,则
(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(wx+
π
2
)(w>0),其图象上相邻的两个最低点间的距离为2π.
(1)求ω的值及f(x)
(2)若a∈(-
π
3
π
2
),f(a+
π
3
)=
1
3
,求sin(2a+
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•红桥区一模)函数f(x)=sin(2ωx+
π
6
)+1(x∈R)图象的两相邻对称轴间的距离为1,则正数ω的值等于(  )

查看答案和解析>>

同步练习册答案