精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为是椭圆上一动点(与左、右顶点不重合)已知的内切圆半径的最大值为,椭圆的离心率为.

1)求椭圆C的方程;

2)过的直线交椭圆两点,过轴的垂线交椭圆与另一点不与重合).的外心为,求证为定值.

【答案】12)见解析

【解析】

1)当面积最大时,最大,即点位于椭圆短轴顶点时,即可得到的值,再利用离心率求得,即可得答案;

2)由题意知,直线的斜率存在,且不为0,设直线,代入椭圆方程得.,利用弦长公式求得,利用的垂直平分线方程求得的坐标,两个都用表示,代入中,即可得答案.

1)由题意知:.

的内切圆半径为

故当面积最大时,最大,即点位于椭圆短轴顶点时

所以,把代入,解得:

所以椭圆方程为.

2)由题意知,直线的斜率存在,且不为0,设直线

代入椭圆方程得.

,则

所以的中点坐标为

所以.

因为的外心,所以是线段的垂直平分线与线段的垂直平分线的交点,的垂直平分线方程为

,得,即,所以

所以,所以为定值,定值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为抛物线上的一点,为抛物线上异于点的两点,且直线的斜率与直线的斜率互为相反数.

1)求直线的斜率;

2)设直线过点并交抛物线于两点,且,直线轴交于点,试探究的夹角是否为定值,若是则求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥中,四边形是等腰梯形,平面.

1)求证:平面

2)已知二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:

甲说:作品获得一等奖”; 乙说:作品获得一等奖”;

丙说:两件作品未获得一等奖”; 丁说:作品获得一等奖”.

评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

日用

水量

频数

1

3

2

4

9

26

5

使用了节水龙头50天的日用水量频数分布表

日用

水量

频数

1

5

13

10

16

5

(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:

2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;

3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某公司举行的一次真假游戏的有奖竞猜中,设置了“科技”和“生活”这两类试题,规定每位职工最多竞猜3次,每次竞猜的结果相互独立.猜中一道“科技”类试题得4分,猜中一道“生活”类试题得2分,两类试题猜不中的都得0分.将职工得分逐次累加并用X表示,如果X的值不低于4分就认为通过游戏的竞猜,立即停止竞猜,否则继续竞猜,直到竞猜完3次为止.竞猜的方案有以下两种:方案1:先猜一道“科技”类试题,然后再连猜两道“生活”类试题;

方案2:连猜三道“生活”类试题.

设职工甲猜中一道“科技”类试题的概率为0.5,猜中一道“生活”类试题的概率为0.6.

(1)你认为职工甲选择哪种方案通过竞猜的可能性大?并说明理由.

(2)职工甲选择哪一种方案所得平均分高?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的离心率为,左、右焦点分别为,过的直线与C交于MN两点,的周长为.

1)求椭圆C的标准方程;

2)过M作与y轴垂直的直线l,点,试问直线与直线l交点的横坐标是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信运动,是由腾讯开发的一个类似计步数据库的公众账号.用户可以通过关注微信运动公众号查看自己每天行走的步数,同时也可以和其他用户进行运动量的或点赞.微信运动公众号为了解用户的一些情况,在微信运动用户中随机抽取了100名用户,统计了他们某一天的步数,数据整理如下:

(万步)

()

5

20

50

15

5

5

1)根据表中数据,在如图所示的坐标平面中作出其频率分布直方图,并在纵轴上标明各小长方形的高;

2)若视频率分布为概率分布,在微信运动用户中随机抽取3人,求至少2人步数多于1.2万步的概率;

3)若视频率分布为概率分布,在微信运动用户中随机抽取2人,其中每日走路不超过0.8万步的有人,超过1.2万步的有人,设,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案