精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱,底面ABCD为直角梯形,其中OAD中点.

(1)求证:PO⊥平面ABCD

(2)求直线BD与平面PAB所成角的正弦值;

(3)线段AD上是否存在点,使得它到平面PCD的距离为.

【答案】(1)见解析.

(2) .

(3)见解析.

【解析】

(1)先证明PO⊥AD,再证明PO⊥平面ABCD.(2)先证明∠DBP为直线BD与平面PAB所成角,再求直线BD与平面PAB所成角的正弦值.(3) 假设存在点Q,设QDx,再求出x的值.

(1)证明:在△PAD中PA=PD,O为AD中点,所以PO⊥AD,

又侧面PAD⊥底面ABCD,平面平面ABCD=AD, 平面PAD,

所以PO⊥平面ABCD.

(2)由(1)PO⊥平面ABCD,又ABAD

.

为直线BD与平面PAB所成的角.

在Rt△DPB中,

所以直线BD与平面PAB所成角的正弦值为.

(3)假设存在点Q,使得它到平面PCD的距离为.

QDx,则,由(Ⅱ)得CD=OB=

在Rt△POC中,

所以PC=CD=DP

由VP-DQC=VQ-PCD

所以存在点Q满足题意,此时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且直线xy+1=0被圆截得的弦长为2,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)已知 是奇函数,求常数m的值;
(2)画出函数y=|3x﹣1|的图象,并利用图象回答:k为何值时,方程|3x﹣1|=k无解?有一解?有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=cos x,对任意的实数t,记f(x)在[t,t+1]上的最大值为M(t),最小值为m(t),则函数h(t)=M(t)﹣m(t)的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图: PA⊥平面ABC,∠ACB=90°且PA=AC=BC=,则异面直线PB与AC所成角的正切值等于________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)求曲线在点处的切线方程.

(Ⅱ)求函数的单调区间.

(Ⅲ)求的取值范围,使得对任意成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥曲线的两个焦点坐标是,且离心率为

(1)求曲线的方程;

(2)设曲线表示曲线轴左边部分,若直线与曲线相交于两点,求的取值范围;

(3)在条件(2)下,如果,且曲线上存在点,使,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P= (其中0≤x≤a,a为正常数).已知生产该产品还需投入成本6(P+ )万元(不含促销费用),产品的销售价格定为(4+ )元/件.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,该公司的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

(1)求abcd的值;

(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

同步练习册答案