精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2)
(I)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(II)命题P:函数f(x)在区间[(a+1)2,+∞)上是增函数;命题Q:函数g(x)是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;
(III)在(II)的条件下,比较f(2)与3-lg2的大小.
【答案】分析:(I)设f(x)=g(x)+h(x),利用函数的奇偶性,组成方程组,即可求得函数的解析式;
(II)将函数f(x)配方,利用函数在区间[(a+1)2,+∞)上是增函数,可得命题P为真的条件;利用函数g(x)=(a+1)x是减函数,可得命题Q为真的条件,从而可求命题P、Q有且仅有一个是真命题,a的取值范围;
(III)由(I)得f(2)=2a+lg|a+2|+6,确定函数v(a)=2a+lg(a+2)+6,在区间上为增函数,即可求得结论.
解答:解:(I)∵f(x)=g(x)+h(x),g(-x)=-g(x),h(-x)=h(x)
∴f(-x)=-g(x)+h(x)

解得g(x)=(a+1)x,h(x)=x2+lg|a+2|;
(II)∵函数f(x)=x2+(a+1)x+lg|a+2|=在区间[(a+1)2,+∞)上是增函数,
,解得a≥-1或a≤-且a≠-2
又由函数g(x)=(a+1)x是减函数,得a+1<0,∴a<-1且a≠-2
∴命题P为真的条件是:a≥-1或a≤-且a≠-2,命题Q为真的条件是:a<-1且a≠-2.
又∵命题P、Q有且仅有一个是真命题,

(III)由(I)得f(2)=2a+lg|a+2|+6
,∴f(2)=2a+lg(a+2)+6
设函数v(a)=2a+lg(a+2)+6,v′(a)=2+>0.
∴函数v(a)在区间上为增函数.
又∵=3-lg2,∴当时,v(a)>,即f(2)>3-lg2.
点评:本题考查函数单调性与奇偶性的结合,考查函数的单调性,考查大小比较,正确运用函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案