精英家教网 > 高中数学 > 题目详情
11.求函数y=$\frac{2+cosx}{2-cosx}$的值域.

分析 y=$\frac{2+cosx}{2-cosx}$=-1+$\frac{4}{2-cosx}$,利用余弦函数的值域,即可得出结论.

解答 解:y=$\frac{2+cosx}{2-cosx}$=-1+$\frac{4}{2-cosx}$,
∵-1≤cosx≤1,
∴-1≤-cosx≤1,
∴1≤2-cosx≤3,
∴$\frac{1}{3}$≤$\frac{1}{2-cosx}$≤1,
∴$\frac{4}{3}$≤$\frac{4}{2-cosx}$≤4,
∴$\frac{1}{3}$≤y≤3,
∴函数y=$\frac{2+cosx}{2-cosx}$的值域为[$\frac{1}{3}$,3].

点评 本题考查求三角函数的值域,考查学生的计算能力,正确变形是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an}的公差为2,且a9=22,则a1的值是(  )
A.3B.-3C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线y2=6x上的两个动点A和B,F是焦点,满足AF+BF=7,线段AB的垂直平分线与x轴交于点C,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,D、E分别是△ABC的边BC的三等分点,设$\overrightarrow{AB}$=m,$\overrightarrow{AC}$=n,∠BAC=$\frac{π}{3}$.
(1)用$\overrightarrow{m}$、$\overrightarrow{n}$分别表示$\overrightarrow{AD}$,$\overrightarrow{AE}$;
(2)若$\overrightarrow{AD}$•$\overrightarrow{AE}$=15,|$\overrightarrow{BC}$|=3$\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.深夜,一辆出租车涉及一起交通事故,已知该市有两家出租车公司,红色出租车公司和蓝色出租车公司,其中红色出租车公司和蓝色出租车公司分别占整个城市出租车的15%和85%.据现场目击证人说,事故现场的出租车是红色的,并对现场目击证人的辨别能力做了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大嫌疑.你觉得警察这样的认定公平吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=asin(πx+α)+bcos(πx+β)(其中a,b,α,β为非零实数),若f(2015)=5,求f(2016)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过点A(1,0)的直线l1与过点B(-1,4)的直线l2平行,且它们之间的距离为$\sqrt{2}$.求直线l1和l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2-k|x|+(k-2)x,
(1)判定函数f(x)的奇偶性并说明理由;
(2)当k=2时画出函数f(x)在[-3,3]上的简图,并写出单调区间;
(3)若关于x的方程x2-2|x|=a有四个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=ax-a2(a>0且a≠1)的图象可能是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案