精英家教网 > 高中数学 > 题目详情
9.判断下列两个函数的奇偶性,并证明.
(1)f(x)=$\frac{{a}^{x}+{a}^{-x}}{2}$,(a>0,a≠1).
(2)g(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$•x.

分析 结合函数的奇偶性的判定方法进行求解即可.

解答 解:(1)∵f(-x)=$\frac{1}{2}$(a-x+ax)=f(x),
∴f(-x)=f(x),
∴f(x)是偶函数,
(2)∵g(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}•(-x)$
=$\frac{1-{2}^{x}}{1+{2}^{x}}•$(-x),
=$\frac{{2}^{x}-1}{{2}^{x}+1}$•x=g(x),
∴g(-x)=g(x),
∴g(x)为偶函数.

点评 本题重点考查了函数的奇偶性,指数幂的运算性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知有一列数:1,3,6,10,15,…,其规律是第1个数是1,第2个数比第1个数大2,第3个数比第2个数大3.第4个数比第3个数大4,…,以此类推.请画出计算这一列数的第100个数的值的程序框图,并写出该算法的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知tanα=3,则
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=1;
(2)sin2α-3sinαcosα+1=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右焦点分别为F1,F2,过点F1作直线l与椭圆交于M,N两点,若|MF2|=|F1F2|,且3|MF1|=4|NF1|,则椭圆的离心率是$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线a是平面α的斜线,过a且和α垂直的平面有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在[0,2π]上,满足cosx≥$\frac{1}{2}$的x的取值范围是[0,$\frac{π}{3}$]∪[$\frac{5π}{3}$,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,内角A,B.C的对边分别为a,b,c,且$\sqrt{3}$acos(2π-C)-(2b-$\sqrt{3}$c)sin($\frac{π}{2}+A$)=0.
(1)求角A的大小;
(2)若($\sqrt{3}-1$)bc=25-a2,试求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合P={x|x2-3x+b=0},Q={x|(x+1)(x2+3x-4)=0}
(1)若b=4是否存在集合M使得P?M⊆Q?若存在,求出所有符合题意的集合M,若不存在,请说明理由
(2)P能否成为Q的一个子集?若能,求出b的值或取值范围,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{{3{x^2}+ax}}{e^x}$(a∈R)在[4,+∞)上是减函数,则a的取值范围为(  )
A.(-∞,-8)B.(-8,0)C.(-8,8)D.(-8,+∞)

查看答案和解析>>

同步练习册答案