精英家教网 > 高中数学 > 题目详情
(2012•烟台一模)如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.
求证:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.
分析:(1)欲证BC∥平面EFG,根据直线与平面平行的判定定理可知只需证BC与平面EFG内直线平行,而EF∥BC,BC?平面EFG,EF?平面EFG,满足定理条件;
(2)欲证平面EFG⊥平面PAB,只需证明EF⊥平面PAB即可,PA⊥EF,AB⊥EF,PA∩AB=A即可证明.
解答:(1)证明:∵E,F分别是线段PA、PD的中点,∴EF∥AD.…(2分)
又∵ABCD为正方形,∴BC∥AD,∴EF∥BC.…(4分)
又∵BC?平面EFG,EF?平面EFG,
∴BC∥平面EFG.…(6分)
(2)证明:∵PA⊥AD,又EF∥AD,
∴PA⊥EF.…(8分)
又ABCD为正方形,∴AB⊥EF,
又PA∩AB=A,∴EF⊥平面PAB,…(10分)
又EF?平面EFG,
∴平面EFG⊥平面PAB.…(12分)
点评:本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•烟台一模)函数y=
ln|x|
x
的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; 
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)若变量x,y满足约束条件
x≥1
y≥x
3x+2y≤15
则w=log3(2x+y)的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知命题p:“a=1是x>0,x+
a
x
≥2的充分必要条件”,命题q:“存在x0∈R,x02+x0-2>0”,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(-log35)的值为(  )

查看答案和解析>>

同步练习册答案