精英家教网 > 高中数学 > 题目详情

求函数在区间[1,3]上的极值。

的极小值为,无极大值

解析试题分析:解:
列表可求得的极小值为,无极大值
考点:导数的运用
点评:主要是考查了导数在研究函数极值上的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,某自来水公司要在公路两侧排水管,公路为东西方向,在路北侧沿直线排,在路南侧沿直线排,现要在矩形区域内沿直线将接通.已知,公路两侧排管费用为每米1万元,穿过公路的部分的排管费用为每米2万元,设所成的小于的角为

(Ⅰ)求矩形区域内的排管费用关于的函数关系式;
(Ⅱ)求排管的最小费用及相应的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若,且在区间内存在极值,求整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是处取得极值,且.
(Ⅰ)求的极大值和极小值;
(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;
(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求的极值,并证明:若
(2)设,且,证明:
,由上述结论猜想一个一般性结论(不需要证明);
(3)证明:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像都过点,且它们在点处有公共切线.
(1)求函数的表达式及在点处的公切线方程;
(2)设,其中,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是函数的两个极值点.
(1)若,求函数的解析式;
(2)若,求实数的最大值;
(3)设函数,若,且,求函数内的最小值.(用表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值.
(1)求的值;(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)设,若对任意的两个实数满足,总存在,使得成立,证明:

查看答案和解析>>

同步练习册答案