ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²C1£º£¨x+1£©2+y2=1£¬Ô²C2£º£¨x-3£©2+£¨y-4£©2=1£®
£¨¢ñ£©Èô¹ýµãC1£¨-1£¬0£©µÄÖ±Ïßl±»Ô²C2½ØµÃµÄÏÒ³¤Îª
6
5
£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ò£©Ô²DÊÇÒÔ1Ϊ°ë¾¶£¬Ô²ÐÄÔÚÔ²C3£º£¨x+1£©2+y2=9ÉÏÒƶ¯µÄ¶¯Ô²£¬ÈôÔ²DÉÏÈÎÒâÒ»µãP·Ö±ð×÷Ô²C1µÄÁ½ÌõÇÐÏßPE£¬PF£¬ÇеãΪE£¬F£¬Çó
C1E
C1F
µÄÈ¡Öµ·¶Î§£»
£¨¢ó£©Èô¶¯Ô²Cͬʱƽ·ÖÔ²C1µÄÖܳ¤¡¢Ô²C2µÄÖܳ¤£¬Ôò¶¯Ô²CÊÇ·ñ¾­¹ý¶¨µã£¿Èô¾­¹ý£¬Çó³ö¶¨µãµÄ×ø±ê£»Èô²»¾­¹ý£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ñ£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨+1£©£¬¼´kx-y+k=0£®
ÒòΪֱÏßl±»Ô²C2½ØµÃµÄÏÒ³¤Îª
6
5
£¬¶øÔ²C2µÄ°ë¾¶Îª1£¬
ËùÒÔÔ²ÐÄC2£¨3£¬4£©µ½l£ºkx-y+k=0µÄ¾àÀëΪ
|4k-4|
k2+1
=
4
5
£®
»¯¼ò£¬µÃ12k2-25k+12=0£¬½âµÃk=
4
3
»òk=
3
4
£®
ËùÒÔÖ±Ïßl·½³ÌΪ4x-3y+4=0»ò3x-4y+3=0¡­£¨4·Ö£©
£¨¢ò£©¶¯Ô²DÊÇÔ²ÐÄÔÚ¶¨Ô²£¨x+1£©2+y2=9ÉÏÒƶ¯£¬°ë¾¶Îª1µÄÔ²
Éè¡ÏEC1F=2¦Á£¬ÔòÔÚRt¡÷PC1EÖУ¬cos¦Á=
|C1E|
|PC1|
=
1
|PC1|
£¬
ÓÐcos2¦Á=2cos2¦Á-1=
2
|PC1|2
-1
£¬
Ôò
C1E
C1F
=|
C1E
||
C1F
|cos2¦Á=cos2¦Á=
2
|PC1|2
-1

ÓÉÔ²µÄ¼¸ºÎÐÔÖʵã¬|DC1|-r¡Ü|PC1|¡Ü|DC1|+r£¬¼´2¡Ü|PC1|¡Ü4£¬4¡Ü|PC1|2¡Ü16
Ôò
C1E
C1F
µÄ×î´óֵΪ-
1
2
£¬×îСֵΪ-
7
8
£®
¹Ê
C1E
C1F
¡Ê[-
7
8
£¬-
1
2
]
£®¡­£¨8·Ö£©
£¨¢ó£©ÉèÔ²ÐÄC£¨x£¬y£©£¬ÓÉÌâÒ⣬µÃCC1=CC2£¬
¼´
(x+1)2+y2
=
(x-3)2+(y-4)2
£®
»¯¼òµÃx+y-3=0£¬¼´¶¯Ô²Ô²ÐÄCÔÚ¶¨Ö±Ïßx+y-3=0ÉÏÔ˶¯£®
ÉèC£¨m.3-m£©£¬Ôò¶¯Ô²CµÄ°ë¾¶Îª
1+CC12
=
(1+(m+1)2+(3-m)2
£®
ÓÚÊǶ¯Ô²CµÄ·½³ÌΪ£¨x-m£©2+£¨y-3+m£©2=1+£¨m+1£©2+£¨3-m£©2£®
ÕûÀí£¬µÃx2+y2-6y-2-2m£¨x-y+1£©=0£®
ÓÉ
x-y+1=0
x2+y2-6y-2=0
µÃ
x=1+
3
2
2
y=2+
3
2
2
»ò
x=1-
3
2
2
y=2-
3
2
2

ËùÒÔ¶¨µãµÄ×ø±êΪ£¨1-
3
2
2
£¬2-
3
2
2
£©£¬£¨1+
3
2
2
£¬2+
3
2
2
£©¡­£¨13·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬Å×ÎïÏßC1£ºy2=8xÓëË«ÇúÏßC2£º
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)
Óй«¹²½¹µãF2£¬µãAÊÇÇúÏßC1£¬C2ÔÚµÚÒ»ÏóÏ޵Ľ»µã£¬ÇÒ|AF2|=5£®
£¨¢ñ£©ÇóË«ÇúÏßC2µÄ·½³Ì£»
£¨¢ò£©ÒÔF1ΪԲÐĵÄÔ²MÓëË«ÇúÏßµÄÒ»Ìõ½¥½üÏßÏàÇУ¬Ô²N£º£¨x-2£©2+y2=1£®Æ½ÃæÉÏÓеãPÂú×㣺´æÔÚ¹ýµãPµÄÎÞÇî¶à¶Ô»¥Ïà´¹Ö±µÄÖ±Ïßl1£¬l2£¬ËüÃÇ·Ö±ðÓëÔ²M£¬NÏཻ£¬ÇÒÖ±Ïßl1±»Ô²M½ØµÃµÄÏÒ³¤ÓëÖ±Ïßl2±»Ô²N½ØµÃµÄÏÒ³¤µÄ±ÈΪ
3
£º1
£¬ÊÔÇóËùÓÐÂú×ãÌõ¼þµÄµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÀëÐÄÂÊΪ
6
3
µÄÍÖÔ²E£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
ÓëÔ²C£ºx2+£¨y-3£©2=4½»ÓÚA£¬BÁ½µã£¬ÇÒ¡ÏACB=120¡ã£¬CÔÚABÉÏ·½£¬ÈçͼËùʾ£¬
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¹ý½»µãB£¬Ð±ÂÊ´æÔÚÇÒ²»Îª0µÄÖ±Ïßl£¬Ê¹µÃ¸ÃÖ±Ïß½ØÔ²CºÍÍÖÔ²EËùµÃµÄÏÒ³¤ÏàµÈ£¿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

Ò»Êø¹âÏߴӵ㣨0£¬1£©³ö·¢£¬¾­¹ýÖ±Ïßx+y-2=0·´Éäºó£¬Ç¡ºÃÓëÍÖÔ²x2+
y2
2
=1
ÏàÇУ¬Ôò·´Éä¹âÏßËùÔÚµÄÖ±Ïß·½³ÌΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ½¹µãΪF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬ÇÒ¾­¹ýµãP(1£¬
3
2
)
£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Éè¹ýF1µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA¡¢BÁ½µã£¬ÎÊÔÚÍÖÔ²CÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹ËıßÐÎAMBF2ΪƽÐÐËıßÐΣ¬Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÈçͼËùʾ£¬F1¡¢F2·Ö±ðΪÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬A¡¢BΪÁ½¸ö¶¥µã£¬ÒÑÖªÍÖÔ²CÉϵĵã(1£¬
3
2
)
µ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍΪ4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýÍÖÔ²CµÄ½¹µãF2×÷ABµÄƽÐÐÏß½»ÍÖÔ²ÓÚP¡¢QÁ½µã£¬Çó¡÷F1PQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÅ×ÎïÏßC£ºy=-x2+2x£¬ÔÚµãA£¨0£¬0£©£¬B£¨2£¬0£©·Ö±ð×÷Å×ÎïÏßµÄÇÐÏßL1¡¢L2£®
£¨1£©ÇóÇÐÏßL1ºÍL2µÄ·½³Ì£»
£¨2£©ÇóÅ×ÎïÏßCÓëÇÐÏßL1ºÍL2ËùΧ³ÉµÄÃæ»ýS£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Å×ÎïÏßy2=2px£¨p£¾0£©ÉÏ×Ý×ø±êΪ-pµÄµãMµ½½¹µãµÄ¾àÀëΪ2£®
£¨¢ñ£©ÇópµÄÖµ£»
£¨¢ò£©Èçͼ£¬A£¬B£¬CΪÅ×ÎïÏßÉÏÈýµã£¬ÇÒÏ߶ÎMA£¬MB£¬MCÓëxÖá½»µãµÄºá×ø±êÒÀ´Î×é³É¹«²îΪ1µÄµÈ²îÊýÁУ¬Èô¡÷AMBµÄÃæ»ýÊÇ¡÷BMCÃæ»ýµÄ
1
2
£¬ÇóÖ±ÏßMBµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬¹ýÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ¶¥µã×÷Á½Ìõ»¥Ïà´¹Ö±µÄÏÒOA¡¢OB£®
£¨1£©ÉèOAµÄбÂÊΪk£¬ÊÔÓÃk±íʾµãA¡¢BµÄ×ø±ê£»
£¨2£©ÇóÏÒABÖеãMµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸