精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义在R上的偶函数,且f(x﹣ )=f(x+ )恒成立,当x∈[2,3]时,f(x)=x,则当x∈(﹣2,0)时,函数f(x)的解析式为(
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|

【答案】C
【解析】解:∵x∈R,f(x﹣ )=f(x+ ), ∴f(x+1)=f(x﹣1),f(x+2)=f(x),
即f(x)是最小正周期为2的函数,
令0≤x≤1,则2≤x+2≤3,
∵当x∈[2,3]时,f(x)=x,
∴f(x+2)=x+2,
∴f(x)=x+2,x∈[0,1],
∵f(x)是定义在R上的偶函数,
∴f(x)=﹣x+2,x∈[﹣1,0],
令﹣2≤x≤﹣1,则0≤x+2≤1,
∵f(x)=x+2,x∈[0,1],
∴f(x+2)=x+4,
∴f(x)=x+4,x∈[﹣2,﹣1],
∴当﹣2<x<0时,函数的解析式为:f(x)=3﹣|x+1|.
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,将沿折起,使平面平面.

(1)证明:平面

(2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.

(1)求图中的值;

(2)估计该校担任班主任的教师月平均通话时长的中位数;

(3)在这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则关于函数有如下说法:

的图像关于轴对称;

②方程的解只有

③任取一个不为零的有理数对任意的恒成立;

④不存在三个点,,使得为等边三角形.

其中正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取1人,认为作业量大的概率为.

认为作业量大

认为作业量不大

合计

男生

18

女生

17

合计

50

(Ⅰ)请完成上面的列联表;

(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

span>5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且2ccosB=2a+b,若△ABC的面积为S= c,则ab的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上海中学在每学年的上学期会举行体育嘉年华活动,假设在今年的活动中共设了8个体育项目,高一某班的班主任参加了其中的若干个项目,甲、乙、丙三位同学猜测该老师参加的项目见下表:(“×”表示未参加,“√”表示参加)

项目1

项目2

项目3

项目4

项目5

项目6

项目7

项目8

×

×

×

×

×

×

×

×

×

×

×

×

×

×

老师告诉甲、乙、丙:“你们分别猜对5次、5次、6次”,由此请你猜测该老师参加的体育项目编号依次为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知,则( )

A. 等腰直角三角形 B. 等边三角形

C. 锐角非等边三角形 D. 钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

同步练习册答案