【题目】已知函数().
(1)判断函数在和的单调性,并用定义证明在上的单调性;
(2)若函数是定义域为的偶函数,且时, ,
①当时,写出的表达式;
②若函数有四个零点,写出的取值范围(不需要说明理由).
【答案】(1)见解析;(2)①;②.
【解析】试题分析:(1)设,则,可得,所以在上是减函数;
(2)①当时, , ,又是偶函数,所以;
②利用函数的单调性结合函数的奇偶性即可得范围.
试题解析:
(1)在上是减函数,在上是增函数,
设,则,
所以, ,
所以在上是减函数.
(2)①当时, , ,又是偶函数,所以时, .
②由(1)及偶函数的性质可得函数有四个零点时, .
点晴:证明函数单调性的一般步骤:(1)取值:在定义域上任取,并且(或);(2)作差: ,并将此式变形(要注意变形到能判断整个式子符号为止);(3)定号:判断的正负(要注意说理的充分性),必要时要讨论;(4)下结论:根据定义得出其单调性.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和极大值;
(3)证明:对任意x1、x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.
(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;
(2)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点,椭圆的左,右顶点分别为.过点的直线与椭圆交于两点,且的面积是的面积的3倍.
(Ⅰ)求椭圆的方程;
(Ⅱ)若与轴垂直,是椭圆上位于直线两侧的动点,且满足,试问直线的斜率是否为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“菊花”型烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂.通过研究,发现该型烟花爆裂时距地面的高度(单位:米)与时间(单位:秒)存在函数关系,并得到相关数据如表:
时间 | 1 | ||
高度 |
(1)根据表中数据,从下列函数中选取一个函数描述该型烟花爆裂时距地面的高度与时间的变化关系: , , ,确定此函数解析式并简单说明理由;
(2)利用你选取的函数,判断烟花爆裂的最佳时刻,并求此时烟花距地面的高度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=2sin(x-)-,现将f(x)的图象向左平移个单位长度,再向上平移个单位长度,得到函数g(x)的图象.
(1)求f()+g()的值;
(2)若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且当x=B时,g(x)取得最大值,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com