精英家教网 > 高中数学 > 题目详情

【题目】如图,平面平面,四边形为菱形,四边形为矩形, 分别是 的中点, .

(Ⅰ)求证: 平面

(Ⅱ)若三棱锥的体积为,求的长.

【答案】(1)详见解析;(2).

【解析】试题分析:(1)连接利用菱形的几何性质可知,根据面面垂直的性质定理可知平面,故,在矩形中, 中点,故,由此证得平面.(2)设,则 ,由此得到三角形的面积.利用等体积法可求得的值,从而得到的值.

试题解析:

(1)证明:连接,在菱形中, ,且

为等边三角形,又∵的中点,∴

,∴

又∵平面平面,∴平面

平面,又平面,∴

∵在矩形中, 的中点,

为等腰直角三角形,∴

同理可证:∴,∴,∴

又∵,且平面

平面

(2)设,则

中,

∵平面平面 为交线,

平面,

为点到平面的距离,则

,∴

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,其中为真命题的是( ) ① ;②
;④
A.①和②
B.②和③
C.③和④
D.①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线x2=2py(p>0)与直线2x﹣y+1=0交于A,B两点, ,点M在抛物线上,MA⊥MB.
(1)求p的值;
(2)求点M的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数函数f(x)=(
(1)求函数f(x)的值域
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=(log2x)2﹣2alog2x+b(x>0).当x= 时,f(x)有最小值﹣1.
(1)求a与b的值;
(2)求满足f(x)<0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P是椭圆 上的一点,F1和F2是焦点,且 ,则△F1PF2的周长为 , △F1PF2的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=x2+bx+c,且f(﹣3)=f(1),f(0)=0.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)﹣(4+2a)x+2,x∈[1,2],求函数g(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+x﹣a,a∈R
(1)若a=1,解不等式f(x)≥1;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

同步练习册答案