精英家教网 > 高中数学 > 题目详情

【题目】已知的图象关于原点对称,其中a为常数.

1)求a的值,并写出函数fx)的单调区间(不需要求解过程);

2)若关于x的方程在[23]上有解,求k的取值范围.

【答案】1fx)在(﹣,﹣1)和(1,+)上是单调增函数;(2)[﹣11].

【解析】

1)根据的图象关于原点对称,得到fx)是奇函数,

fx+f(﹣x=0,恒成立,即恒成立,化简为x2a21=0求解.根据a的值,fx=log1),再利用复合函数的单调性确定单调区间.

2)关于x的方程[23]上有解,即x+k)在[23]上有解,转化为kx,在[23]上有解,再求得gxxx[23]值域即可.

1)因为的图象关于原点对称,

所以fx)为奇函数,

所以fx+f(﹣x=0

所以1a2x2=1-x2

x2a21=0

所以a=1a=1(舍去),

所以fx=log1),定义域为(﹣,﹣11+∞.

所以fx)的增区间是(﹣,﹣1)和(1+∞),无减区间.

2)关于x的方程[23]上有解,

x+k)在[23]上有解,

x+k,得kx

gxxx[23]

gx=1xx[23]上单调递减,且f2=1f3=1

所以k的取值范围是[11].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品.现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.

1)将表示为的函数,求出该函数表达式;

2)根据直方图估计利润不少于57万元的概率;

3)根据频率分布直方图,估计一个销售季度内市场需求量的平均数与中位数的大小(保留到小数点后一位).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:

序号(i

分组(分数)

组中值(Gi

频数(人数)

频率(fi

1

65

0.10

2

75

20

3

85

0.20

4

95

合计

50

1.00

1)求出频率分布表中①②③④⑤处的值;

2)为鼓励更多的学生了解安全自救知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生能获奖;

3)求这800名学生的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.

的分组

企业数

2

24

53

14

7

1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;

2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )

A. B. C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点坐标分别是,并且经过点.

(1)求椭圆的方程;

(2)若直线与圆相切,并与椭圆交于不同的两点.,且满足时,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数满足,称为函数的不动点.有下面三个命题:(1)若是二次函数,且没有不动点,则函数也没有不动点;(2)若是二次函数,则函数可能有个不动点;(3)若的不动点的个数是,则的不动点的个数不可能是;它们中所有真命题的序号是________________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】欧拉公式为虚数单位,为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步练习册答案