精英家教网 > 高中数学 > 题目详情
如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为( )

A.
B.
C.
D.
【答案】分析:由题意求出AP的距离,然后求出∠AOP,即可求解A、P两点间的球面距离.
解答:解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,
因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=,E为BQ的中点,AE==
AP==
AP2=OP2+OA2-2OP•OAcos∠AOP,
cos∠AOP=,∠AOP=arccos
A、P两点间的球面距离为
故选A.
点评:本题考查反三角函数的运用,球面距离及相关计算,考查计算能力以及空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,半径为R的半球内有一内接正六棱锥P-ABCDEF,则直线PA与平面PBE所成的角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,半径为R的半球内有一内接正六棱锥P-ABCDEF,则直线PA与平面BPE所成角正弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•四川)如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为(  )

查看答案和解析>>

科目:高中数学 来源:2010年四川省成都市石室中学高考数学模拟试卷(理科)(解析版) 题型:解答题

如图,半径为R的半球内有一内接正六棱锥P-ABCDEF,则直线PA与平面BPE所成角正弦值是   

查看答案和解析>>

同步练习册答案