精英家教网 > 高中数学 > 题目详情
已知直线,给出下列命题:
①若,则;     ②若
③若;      ④若
⑤若
其中正确命题的序号是_______________(把所有正确命题的序号都填上).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥PABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,平面PAD⊥平面ABCDEF分别为PCBD的中点.
(1)证明:EF∥平面PAD
(2)证明:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,在四棱锥S—ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点.
(Ⅰ)求证:AC⊥平面SBD;
(Ⅱ)若E为BC中点,点P在侧面△SCD内及其边界上运动,并保持PE⊥AC,试指出动点P的轨迹,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共13分) 如图,在三棱锥中,底面ABC
,点分别在棱上,且 
(Ⅰ)求证:平面
(Ⅱ)当的中点时,求与平面所成角的大小的余弦值;
(Ⅲ)是否存在点,使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是地面边长的倍,P为侧棱SD上的点。
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小
(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知是边长为1的正方体,求:

⑴直线与平面所成角的正切值;
⑵二面角的大小;
⑶求点到平面的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B= ___________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为直角梯形,,,平面
(1)在线段上是否存在一点,使平面平面,如果存在,说明E点位置;如果不存在,说明理由.
(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案