精英家教网 > 高中数学 > 题目详情

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

2)设点在直线上,且.证明:过点P且垂直于OQ的直线C的左焦点F.

【答案】(1) .(2)证明见解析.

【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程;(2)证明直线过定点问题,一般方法是以算代证:即证,先设 Pmn),则需证,即根据条件可得,而,代入即得.

试题解析:解:(1)设P(x,y),M(),则N(),

.

因为M()在C上,所以.

因此点P的轨迹为.

由题意知F(-1,0),设Q(-3,t),P(m,n),则

.

得-3m-+tn-=1,学&科网又由(1)知,故

3+3m-tn=0.

所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.

点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒成立的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中正确的个数是(  )

①命题“任意”的否定是“任意

②命题“若,则”的逆否命题是真命题;

③若命题为真,命题为真,则命题为真;

④命题“若,则”的否命题是“若,则.

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图象在点(00)处有相同的切线.

Ⅰ)求a的值;

Ⅱ)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)若,求的单调区间;

(2)当时,记的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数R上的奇函数,求实数a的值;

2)若对于任意,恒有,求实数a的取值范围;

3)若,函数在区间[02]上的最大值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

(1)确定的解析式;

2)判断并证明上的单调性;

3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李冶(1192-1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注: 平方步为亩,圆周率按近似计算)

A.步、B.步、C.步、D.步、

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性

2)若函数存在极大值且极大值点为1,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形与矩形全等,二面角为直二面角,中点,所成角为,且,则( ).

A. 1 B. C. D.

查看答案和解析>>

同步练习册答案