精英家教网 > 高中数学 > 题目详情
2.若函数f(x)=lnx+$\frac{a}{x+1}$(a∈N)在(1,3)上只有一个极值点,则a的取值个数是(  )
A.1B.2C.3D.4

分析 求出函数的导数,由函数的零点存在定理可得f′(1)f′(3)<0,进而验证a=4与a=$\frac{16}{9}$时是否符合题意,即可求答案.

解答 解:f(x)的导数为f′(x)=$\frac{1}{x}$-$\frac{a}{(x+1)^{2}}$,
当f′(1)f′(3)<0时,函数f(x)在区间(1,3)上只有一个极值点,
即为(1-$\frac{1}{4}$a)($\frac{1}{3}$-$\frac{1}{16}$a)<0,
解得4<a<$\frac{16}{3}$;
当a=4时,f′(x)=$\frac{1}{x}$-$\frac{4}{(x+1)^{2}}$=0,解得x=1∉(1,3),
当a=$\frac{16}{3}$时,f′(x)=$\frac{1}{x}$-$\frac{16}{3(x+1)^{2}}$=0在(1,3)上无实根,
则a的取值范围是4<a<$\frac{16}{3}$,且a∈N,即为a=5.
故选:A.

点评 本题考查利用导数研究函数的极值问题,体现了转化的思想方法的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知定义在(0,+∞)上的连续函数y=f(x)满足:xf′(x)-f(x)=xex且f(1)=-3,f(2)=0.则函数y=f(x)(  )
A.有极小值,无极大值B.有极大值,无极小值
C.既有极小值又有极大值D.既无极小值又无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC满足∠B>∠C,∠A的平分线和过顶点的高线、中线与边BC分别交与点L、H、D.证明∠HAL=∠DAL的充分必要条件是∠BAC=90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1,F2,其长轴与短轴之比为$\frac{\sqrt{6}}{2}$,且点(1,$\frac{2\sqrt{3}}{3}$)在椭圆C上.
(1)求椭圆C的离心率及方程;
(2)已知l1,l2是过点F2且相互垂直的两条直线,l1交椭圆C于M,N两点,l2交椭圆C于P,Q两点,记MN,PQ的中点分别为R,S,探究直线RS是否过某一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若正项数列{an}中,a1+a2+a3+…+an=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),n∈N*.则数列{an}的通项公式为(  )
A.an=$\sqrt{n}$-$\sqrt{n-1}$B.an=$\sqrt{n}$+$\sqrt{n-1}$C.an=$\sqrt{n}$-$\sqrt{n+1}$D.an=$\sqrt{n}$+$\sqrt{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=|x+1|+|x-1|,不等式f(x)<4解集为M
(1)求M;
(2)若不等式f(x)+a<0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.y=1-2sin(2x+$\frac{π}{3}$)的值域为[-1,3],当y取最大值时,x=kπ-$\frac{5π}{12}$(k∈Z);当y取最小值时,x=kπ+$\frac{π}{12}$(k∈Z),周期为π,单调递增区间为[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z);单调递减区间为[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}$](k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间(0,π)上的单调区间;
(3)当x∈[0,$\frac{π}{2}$]时,函数g(x)=f(x)-k恰有两个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某中学高三年级进行数学竞赛选拔考试,进人决赛的10人分布如下:从这10人中任选3人给高二年级学生进行竞赛指导.
班级1班2班3班4班
人数2314
(1)这3人分别来自不同班级的概率是多少?
(2)记这3人中来自2班的人数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案