精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求的单调区间和极值;

2)若对于任意的,总存在,使得成立,求正实数的取值范围.

【答案】1的单调递增区间;单调递减区间是,极小值,极大值;(2.

【解析】

1)求导,根据导数的正负可得函数的单调性,进而得函数的极值.

2)对于任意的,总存在,使得,显然

,故,设,上式等价于,分类讨论求出的取值范围.

1)由已知,有.,解得.

变化时,的变化情况如下表:

0

-

0

+

0

-

0

所以,的单调递增区间;单调递减区间是.

时,有极小值,且极小值

时,有极大值,且极大值.

2)由及(1)知,当时,

时,.设集合

集合

对于任意的,都存在

使得等价于,显然.下面分三种情况讨论:

i)当,即时,由可知,,而

所以不是的子集.

ii)当,即时,有

且此时上单调递减,故,因而.

,有上的取值范围包含,则,所以.

iii)当,即时,有,且此时上单调递减,

,所以不是的子集.

综上的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面ABCD为菱形,,侧面PAD与底面ABCD所成的角为是等边三角形,点P到平面ABCD距离为

1)证明:

2)求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)令,讨论的单调性;

2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列的各项均为整数,满足:,且,其中

1)若,写出所有满足条件的数列

2)求的值;

3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.

(1)当.

①求数列的通项公式;

②若,求数列的前项的和

(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有n2n∈N*)给定的不同的数随机排成一个下图所示的三角形数阵:

Mk是第k行中的最大数,其中1≤knk∈N*.记M1M2Mn的概率为pn

(1)求p2的值;

(2)证明:pn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc分别为ABC三个内角ABC的对边,2bcosA=acosC+ccosA

1)求角A的大小;

2)若a=3ABC的周长为8,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以线段EF为直径的圆内切于圆Ox2+y216

1)若点F的坐标为(﹣20),求点E的轨迹C的方程;

2)在(1)的条件下,轨迹C上存在点T,使得,其中MN为直线ykx+bb≠0)与轨迹C的交点,求△MNT的面积.

查看答案和解析>>

同步练习册答案