【题目】已知函数,.
(1)求的单调区间和极值;
(2)若对于任意的,总存在,使得成立,求正实数的取值范围.
【答案】(1)的单调递增区间;单调递减区间是,,极小值,极大值;(2).
【解析】
(1)求导,根据导数的正负可得函数的单调性,进而得函数的极值.
(2)对于任意的,总存在,使得,显然
,故,设,,上式等价于,分类讨论求出的取值范围.
(1)由已知,有.令,解得或.
当变化时,,的变化情况如下表:
0 | |||||
- | 0 | + | 0 | - | |
0 |
所以,的单调递增区间;单调递减区间是,.
当时,有极小值,且极小值;
当时,有极大值,且极大值.
(2)由及(1)知,当时,;
当时,.设集合,
集合,
则“对于任意的,都存在,
使得”等价于,显然.下面分三种情况讨论:
(i)当,即时,由可知,,而,
所以不是的子集.
(ii)当,即时,有,
且此时在上单调递减,故,因而.
由,有在上的取值范围包含,则,所以.
(iii)当,即时,有,且此时在上单调递减,
故,,所以不是的子集.
综上的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知四棱锥的底面ABCD为菱形,,侧面PAD与底面ABCD所成的角为,是等边三角形,点P到平面ABCD距离为.
(1)证明:;
(2)求二面角余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)现随机抽取1名顾客,试估计该顾客年龄在[30,50)且未使用自由购的概率;
(2)从被抽取的年龄在[50,70]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[50,60)的概率;
(3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列的前项和为,已知,且对一切都成立.
(1)当时.
①求数列的通项公式;
②若,求数列的前项的和;
(2)是否存在实数,使数列是等差数列.如果存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有(n≥2,n∈N*)个给定的不同的数随机排成一个下图所示的三角形数阵:
设Mk是第k行中的最大数,其中1≤k≤n,k∈N*.记M1<M2<…<Mn的概率为pn.
(1)求p2的值;
(2)证明:pn>.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosA=acosC+ccosA.
(1)求角A的大小;
(2)若a=3,△ABC的周长为8,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知以线段EF为直径的圆内切于圆O:x2+y2=16.
(1)若点F的坐标为(﹣2,0),求点E的轨迹C的方程;
(2)在(1)的条件下,轨迹C上存在点T,使得,其中M,N为直线y=kx+b(b≠0)与轨迹C的交点,求△MNT的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com