精英家教网 > 高中数学 > 题目详情
19.若函数f(x)对任意实数x,y均有f(x)•f(y)=f(x+y),且对于任意的x都有f(x)>0,且当x<0时f(x)>1.
(1)求证:f(x)为R上的减函数;
(2)当f(4)=$\frac{1}{16}$时,若f(x2-3x+2)≤$\frac{1}{4}$,求实数x的取值范围.

分析 (1)令x1>x2且x1,x2∈R,有f(x1)•f(x2-x1)=f(x2),又x2-x1<0,即f(x2-x1)>1故$\frac{{f({x_2})}}{{f({x_1})}}=f({x_2}-{x_1})>1$,从而确定f(x1)与f(x2)的大小,根据函数单调性的定义进行判定即可;
(2)由f(4)=$\frac{1}{16}=f(2+2)={f^2}$(2)⇒故f(2)=$\frac{1}{4}$,不等式可变形为f(x2-3x+2)≤f(2)即x2-3x≥0,从而求解.

解答 (1)证明:令x1>x2且x1,x2∈R
有f(x1)•f(x2-x1)=f(x2),又x2-x1<0,即f(x2-x1)>1
故$\frac{{f({x_2})}}{{f({x_1})}}=f({x_2}-{x_1})>1$,又f(x)>0∴f(x2)>f(x1
故f(x)为R上的减函数; …(6分)
(2)f(4)=$\frac{1}{16}=f(2+2)={f^2}$(2)⇒故f(2)=$\frac{1}{4}$,…(8分)
则原不等式可变形为f(x2-3x+2)≤f(2)
即x2-3x≥0------------(10分)
解得:x≥3或x≤0------------(12分)

点评 以及灵活利用所给的恒等式证明函数的单调性,及利用单调性解不等式问题.此类题要求答题者有较高的数学思辨能力,能从所给的条件中寻找到证明问题的关键点出来.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,四边形ABCD为梯形,AD∥BC,AD=2BC,过 A1,C,D三点的平面记为α,BB1与α的交点为Q.
(1)证明:Q为BB1的中点;
(2)若A1A=4,CD=2,梯形 ABCD的面积为6,求平面α与底面ABCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2ex
(1)求f(x)在(-∞,0)上的最大值;
(2)若函数f(x)在(-1,+∞)上的最小值为m,当x>0时,试比较$m-\frac{1}{2}$与lnx-2x+1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=4cosxsin(x+$\frac{π}{6}$)-1
(Ⅰ)求f(x)的周期和单调减区间;
(Ⅱ)求f(x)在区间[-$\frac{π}{6},\frac{π}{4}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知全集U=R,集合A={x|x>2或x<1},B={x|x-a≤0},若∁UB⊆A,则实数a的取值范围是(  )
A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设l,m,n均为直线,其中m,n在平面α内,则“l⊥m且l⊥n”是“l⊥α”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知α,β为锐角,且cosα=$\frac{3}{5}$,sin(α-β)=$\frac{5}{13}$,则cosβ=(  )
A.-$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.-$\frac{56}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{{x}^{2}+5x+5}{{e}^{x}}$.
(1)求f(x)的极大值;
(2)求f(x)在区间(-∞,0]上的最小值;
(3)若x2+5x+5-aex≥0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(x+φ)(A>0,0<φ<π,x∈R)的最大值是1,其图象经过点$M({\frac{π}{3}\;,\;\;\frac{1}{2}})$.
(1)求f(x)的解析式;
(2)已知$α\;,\;\;β∈({0\;,\;\;\frac{π}{2}})$,且$f(α)=\frac{3}{5}$,$f(β)=\frac{12}{13}$.求f(α+β)的值.

查看答案和解析>>

同步练习册答案