分析 由题意,甲不是第一名且乙不是最后一名.先排乙,乙得到冠军,有A44=24种排法不同的情况.乙没有得到冠军,有3种情况;再排甲,也有3种情况;余下的问题是三个元素在三个位置全排列,根据分步计数原理得到结果.
解答 解:由题意,甲不是第一名且乙不是最后一名.
先排乙,乙得到冠军,有A44=24种排法不同的情况.
乙没有得到冠军,有3种情况;再排甲,也有3种情况;
余下3人有A33种排法,有3•3•A33=54种不同的情况.
故共有24+54=78种不同的情况.
故答案为:78
点评 本题主要考查排列、组合与简单的计数问题,解决此类问题的关键是弄清完成一件事,是分类完成还是分步完成,是有顺序还是没有顺序,像这种特殊元素与特殊位置的要优先考虑.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -tanθ | B. | tanθ | C. | -cosθ | D. | sinθ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | p∧q | B. | (?p)∧q | C. | p∧(?q) | D. | (?p)∧(?q) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{a}>\frac{1}{b}$ | B. | 2a>2b | C. | |a|>|b| | D. | a3<b3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {t|${\frac{{2\sqrt{5}}}{5}$≤t≤$\frac{{2\sqrt{3}}}{3}}\right.}$} | B. | {t|{2≤t≤2$\sqrt{3}}$} | C. | {t|${\frac{{2\sqrt{5}}}{5}$≤t≤2$\sqrt{3}$} | D. | {{t|{2≤t≤2$\sqrt{2}}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (¬p)∨q | B. | p∧q | C. | p∨q | D. | p∧(¬q) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com