精英家教网 > 高中数学 > 题目详情
9.已知直线l:y=k(x+1)-$\sqrt{3}$与圆x2+y2=12交于A、B两点,过A、B分别做l的垂线与x轴交于C、D两点,若|AB|=4$\sqrt{3}$,则|CD|=8$\sqrt{3}$.

分析 根据直线与圆相交,圆x2+y2=12可知:圆心为(0,0),半径r=2$\sqrt{3}$,弦长为|AB|=4$\sqrt{3}$=2r,说明直线l过圆心O所以可以得到直线AB的倾斜角.根据AOC和OBD是两个全等的直角三角形,OA=OB=2$\sqrt{3}$,
即可求出OC和OD,由直线的倾斜角即可得到|CD|的长度.

解答 解:由圆的方程x2+y2=12可知:圆心为(0,0),半径r=2$\sqrt{3}$,
∵弦长为|AB|=4$\sqrt{3}$=2r,
∴可以得知直线l经过圆心O.
∴0=k(0-1)-$\sqrt{3}$,解得k=$\sqrt{3}$,
∴直线AB的方程为:y=$\sqrt{3}$x,
设直线AB的倾斜角为θ,则tanθ=$\sqrt{3}$,
∴θ=60°,
∴在Rt△AOC中:|CO|=$\frac{|OA|}{cos60°}$=$\frac{2\sqrt{3}}{\frac{1}{2}}$=4$\sqrt{3}$,
那么:|CD|=2|OC|=8$\sqrt{3}$,
故答案为:8$\sqrt{3}$.

点评 本题考查直线与圆的位置关系,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.不等式$\frac{5}{x+2}≥1$的解集为(  )
A.(-∞,3)B.(-2,3]C.(-∞,-2)∪[3,+∞)D.(-∞,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题p:?x,y∈R,x2+y2≥0,则命题p的否定为(  )
A.?x,y∈R,x2+y2<0B.?x,y∈R,x2+y2≤0
C.?x0,y0∈R,x02+y02≤0D.?x0,y0∈R,x02+y02<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC中,角A,B,C所对的边分别是a,b,c,$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{b}$+2$\sqrt{3}$csinA=2b+4c,且14sinC=3$\sqrt{3}$.
(1)求A的大小;
(2)若c=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标系分别为(0,0,2),(2,2,2),(2,2,0),(2,1,1),给出编号为①②③④⑤的五个图,则该四面体的侧视图和俯视图分别为(  )
A.①和⑤B.②和③C.④和⑤D.④和③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+1|+|x-2|,f(x)-m≥0恒成立.
(1)求实数m的取值范围;
(2)m的最大值为n,解不等式|x-3|-2x≤n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB⊥BC,AB=6,BC=8,AA1=5,则该几何体的表面积是(  )
A.216B.168C.144D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,且(2$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=0,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线3x+y-6=0被圆 x2+(y-1)2=5截得的弦长等于$\sqrt{10}$.

查看答案和解析>>

同步练习册答案