精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆和直线,椭圆的离心率,坐标原点到直线的距离为.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知定点,若直线过点且与椭圆相交于两点,试判断是否存在直线,使以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

【答案】(I;(II.

【解析】试题分析:(Ⅰ)根据椭圆中的 ,以及 ,和点到直线的距离公式计算求得 ;(Ⅱ)分斜率不存在和斜率存在两种情况讨论,当斜率存在时,设直线为 与椭圆方程联立,利用根与系数的关系计算 ,从而求得斜率 和直线方程.

试题解析:(Ⅰ)由直线,∴,即——①

又由,得,即,又∵,∴——②

将②代入①得,即,∴

∴所求椭圆方程是

(Ⅱ)①当直线的斜率不存在时,直线方程为

则直线与椭圆的交点为,又∵

,即以为直径的圆过点

②当直线的斜率存在时,设直线方程为

,得

,得

∵以为直径的圆过点,∴,即

,∴

,解得,即

综上所述,当以为直径的圆过定点时,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当a=2时,求曲线在点处的切线方程;

(2)设函数,讨论的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中, 是坐标原点,动圆经过点,且与直线相切.

(1)求动圆圆心的轨迹方程

(2)过的直线交曲线两点,过作曲线的切线,直线交于点,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线;

2)若函数在其定义域内为增函数,求正实数的取值范围;

3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)若函数上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)|xa|

(1)若不等式f(x)3的解集为{x|1x5}求实数a的值

(2)(1)的条件下f(x)f(x5)m对一切实数x恒成立求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,已知椭圆的上顶点为,左、右顶点为,右焦点为 ,且的周长为14.

I)求椭圆的离心率;

II)过点的直线与椭圆相交于不同两点,点N在线段上.设,试判断点是否在一条定直线上,并求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】编号为ABCDE5个小球放在如图所示的5个盒子里,要求每个盒子只能放1个小球,且A球不能放在12号盒子里,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?

查看答案和解析>>

同步练习册答案