精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,其中左焦点(-2,0).

1) 求椭圆C的方程;

2) 若直线y=x+m与椭圆C交于不同的两点AB,且线段AB的中点M在圆x2+y2=1上,求m的值.

【答案】19.

经检验解题

【解析】

本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的运用。

1)由题意,得得到a,b,c的值。得到椭圆的方程。

2)设点AB的坐标分别为(x1,y1),(x2, y2),线段AB的中点为M(x0,y0)

y得,3x2+4mx+2m2-8=0结合韦达定理,和判别式得到参数m值。

解:(1) 由题意,得………………………………………………3

解得椭圆C的方程为.…………………………………………6

2) 设点AB的坐标分别为(x1,y1),(x2, y2),线段AB的中点为M(x0,y0)

y得,3x2+4mx+2m2-8=0,……………………………………………8

Δ=96-8m20,∴-2m2.

.………………………………………12

M(x0,y0)在圆x2+y2=1上,

.………………………………………………… 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的短轴长为2,离心率e=
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆交于不同的两点A,B,与圆x2+y2= 相切于点M.
(i)证明:OA⊥OB(O为坐标原点);
(ii)设λ= ,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图ABCD是平面四边形,∠ADB=∠BCD=90°,AB=4,BD=2.
(Ⅰ)若BC=1,求AC的长;
(Ⅱ)若∠ACD=30°,求tan∠BDC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为

(1)求的值;

(2)若,求函数的单调区间;

(3)设函数,且在区间内为减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具城进行促销活动,促销方案是:顾客每消费满1000元,便可以获得奖券一张,每张奖券中奖的概率为,若中奖,则家具城返还顾客现金1000元,某顾客购买一张价格为3400元的餐桌,得到3张奖券,设该顾客购买餐桌的实际支出为(元);

(1)求的所有可能取值;

(2)求的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)= +|lnx﹣a|,x∈[1,e2].
(1)当a=3时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若f(x)≤ 恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ln(x2﹣4x+3)的单调减区间为(  )

A. (2,+∞) B. (3,+∞) C. (﹣∞,2) D. (﹣∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴与短轴之和为6,椭圆上任一点到两焦点 的距离之和为4.

(1)求椭圆的标准方程;

(2)若直线 与椭圆交于 两点, 在椭圆上,且 两点关于直线对称,问:是否存在实数,使,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中是自然对数的底数, =2.71828…).

(1)当时,过点作曲线的切线,求的方程;

(2)当时,求证;

(3)求证:对任意正整数,都有

查看答案和解析>>

同步练习册答案