【题目】如图,在四棱锥中,底面是菱形,平面平面,且,,为的中点,.
(1)求证:平面;
(2)求三棱锥的体积.
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中记载了这样的一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了378里路,第一天健步行走,从第二天起其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第三天走的路程里数为( )
A.192B.48C.24D.88
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)设椭圆在左、右顶点分别为、,左焦点为,过的直线与交于、两点(和均不在坐标轴上),直线、分别与轴交于点、,直线、分别与轴交于点、,求证:为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,平面,,,且,,分别为棱,,的中点.
(1)证明:直线与共面;并求其所成角的余弦值;
(2)在棱上是否存在点,使得平面,若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点、分别是椭圆的上、下顶点,以为直径作圆,直线与椭圆交于、两点,与圆交于、两点.
(1)若直线的倾斜角为,求(为坐标原点)的面积;
(2)若点、分别在直线、上,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是偶函数.
(1)求的值;
(2)证明:对任意实数,函数的图象与直线最多只有一个交点;
(3)设若函数的图象有且只有一个公共点,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,离心率为,点是椭圆上的一个动点,且面积的最大值为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于、两点,过点作直线的垂线交圆:于另一点.若的面积为3,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com