精英家教网 > 高中数学 > 题目详情
20.设函数f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)若f(1)<0,试求不等式  f(x2+2x)+f(x-4)>0的解集;
(2)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-2mf(x),x∈[1,+∞)的最小值为-2,求m的值.

分析 (1)根据f(x)是定义域为R的奇函数,可得k=1,从而f(x)=ax-a-x(a>0,且a≠1),利用f(1)<0,可得0<a<1,从而可证f(x)在R上单调递减,故原不等式化为x2+2x《4-x,从而可求不等式的解集;
(2)根据f(1)=$\frac{3}{2}$确定a=2的值,从而可得函数g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x2-2m(2x-2-x)+2.令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数,可得t≥f(1)=$\frac{3}{2}$,令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥$\frac{3}{2}$),分类讨论,利用最小值为-2,可求m的值.

解答 解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0,可k-1=0,即k=1,
故f(x)=ax-a-x(a>0,且a≠1)
∵f(1)<0,∴a-$\frac{1}{a}$<0,又a>0且a≠1,∴0<a<1.
f′(x)=axlna+$\frac{lna}{{a}^{x}}$,
∵0<a<1,∴lna<0,而ax+$\frac{1}{{a}^{x}}$>0,
∴f′(x)<0,∴f(x)在R上单调递减.
原不等式化为:f(x2+2x)>f(4-x),
∴x2+2x<4-x,即x2+3x-4<0
∴-4<x<1,
∴不等式的解集为{x|-4<x<1}.
(2)∵f(1)=$\frac{3}{2}$,∴a-$\frac{1}{a}$=$\frac{3}{2}$,即2a2-3a-2=0,∴a=2或a=-$\frac{1}{2}$(舍去).
∴g(x)=22x+2-2x-2m(2x-2-x)=(2x-2-x2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数
∵x≥1,∴t≥f(1)=$\frac{3}{2}$,
令h(t)=t2-2mt+2=(t-m)2+2-m2 (t≥$\frac{3}{2}$)
若m≥$\frac{3}{2}$,当t=m时,h(t)min=2-m2=-2,∴m=2
若m<$\frac{3}{2}$,当t=$\frac{3}{2}$时,h(t)min=$\frac{17}{4}$-3m=-2,
解得m=$\frac{25}{12}$>$\frac{3}{2}$,舍去.
综上可知m=2.

点评 本题考查函数单调性与奇偶性的综合,考查解不等式,考查二次函数最值的研究,解题的关键是确定函数的单调性,确定参数的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设函数f(x+1)=x2+2x,则f(x)的单调递减区间是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A、B、C所对的边分别为a,b,c,且满足 2acosC=2b-c.
(1)求sinA的值;
(2)若a=1,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合A={1,2,3},B={x|x=2k+1,k∈Z},则A∩B=(  )
A.{1}B.{1,2}C.{1,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数 f(x)=|x+1|+|x-1|,则它(  )
A.是奇函数B.是偶函数
C.既是奇函数又是偶函数D.是非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.从6名女同学和4名同学中选出4名组建小组,按下列条件,分别求选法种数.
(1)甲必须参加;
(2)甲必须参加,而乙不参加;
(3)甲、乙至少有一人参加;
(4)甲、乙至多有一人参加;
(5)至少有两名女同学;
(6)担任不同的职务;
(7)甲担任组长,其余3人担任不同的职务.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=kx2+(k-3)x+1的图象与x轴在原点的右侧有交点,试确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.关于函数f(x)=3x+x2+2x-1的零点,下列说法中正确的个数是(  )
①函数f(x)=0在x<0时有两个零点;
②函数f(x)在(0,+∞)上有两个零点;
③函数的两个零点一个大于0,另一个小于0;
④函数的一个零点为0,另一个零点小于0.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=2${\;}^{\frac{1+x}{1-x}}$的定义域为(-∞,1)∪(1,+∞),值域为(0,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案